|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import AutoencoderKLCogVideoX |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AutoencoderKLCogVideoXTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderKLCogVideoX |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
def get_autoencoder_kl_cogvideox_config(self): |
|
return { |
|
"in_channels": 3, |
|
"out_channels": 3, |
|
"down_block_types": ( |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDownBlock3D", |
|
), |
|
"up_block_types": ( |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXUpBlock3D", |
|
), |
|
"block_out_channels": (8, 8, 8, 8), |
|
"latent_channels": 4, |
|
"layers_per_block": 1, |
|
"norm_num_groups": 2, |
|
"temporal_compression_ratio": 4, |
|
} |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_frames = 8 |
|
num_channels = 3 |
|
sizes = (16, 16) |
|
|
|
image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 8, 16, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 8, 16, 16) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = self.get_autoencoder_kl_cogvideox_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
def test_enable_disable_tiling(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
torch.manual_seed(0) |
|
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_tiling() |
|
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertLess( |
|
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE tiling should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_tiling() |
|
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertEqual( |
|
output_without_tiling.detach().cpu().numpy().all(), |
|
output_without_tiling_2.detach().cpu().numpy().all(), |
|
"Without tiling outputs should match with the outputs when tiling is manually disabled.", |
|
) |
|
|
|
def test_enable_disable_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict).to(torch_device) |
|
|
|
inputs_dict.update({"return_dict": False}) |
|
|
|
torch.manual_seed(0) |
|
output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
torch.manual_seed(0) |
|
model.enable_slicing() |
|
output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertLess( |
|
(output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), |
|
0.5, |
|
"VAE slicing should not affect the inference results", |
|
) |
|
|
|
torch.manual_seed(0) |
|
model.disable_slicing() |
|
output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] |
|
|
|
self.assertEqual( |
|
output_without_slicing.detach().cpu().numpy().all(), |
|
output_without_slicing_2.detach().cpu().numpy().all(), |
|
"Without slicing outputs should match with the outputs when slicing is manually disabled.", |
|
) |
|
|
|
def test_gradient_checkpointing_is_applied(self): |
|
expected_set = { |
|
"CogVideoXDownBlock3D", |
|
"CogVideoXDecoder3D", |
|
"CogVideoXEncoder3D", |
|
"CogVideoXUpBlock3D", |
|
"CogVideoXMidBlock3D", |
|
} |
|
super().test_gradient_checkpointing_is_applied(expected_set=expected_set) |
|
|
|
def test_forward_with_norm_groups(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["norm_num_groups"] = 16 |
|
init_dict["block_out_channels"] = (16, 32, 32, 32) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.to_tuple()[0] |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
@unittest.skip("Unsupported test.") |
|
def test_outputs_equivalence(self): |
|
pass |
|
|