Spaces:
Build error
Build error
| import os | |
| import spaces | |
| import gradio as gr | |
| import torch | |
| import logging | |
| from diffusers import DiffusionPipeline | |
| from models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel | |
| from pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline | |
| import subprocess | |
| try: | |
| print(subprocess.check_output(["nvcc", "--version"]).decode("utf-8")) | |
| except: | |
| print("nvcc version check error") | |
| # subprocess.run('python -m pip install flash-attn --no-build-isolation', shell=True) | |
| from nf4 import * | |
| # Resolution options | |
| RESOLUTION_OPTIONS = [ | |
| "1024 × 1024 (Square)", | |
| "768 × 1360 (Portrait)", | |
| "1360 × 768 (Landscape)", | |
| "880 × 1168 (Portrait)", | |
| "1168 × 880 (Landscape)", | |
| "1248 × 832 (Landscape)", | |
| "832 × 1248 (Portrait)" | |
| ] | |
| # Parse resolution string to get height and width | |
| def parse_resolution(resolution_str): | |
| return tuple(map(int, resolution_str.split("(")[0].strip().split(" × "))) | |
| def gen_img_helper(model, prompt, res, seed): | |
| global pipe, current_model | |
| # 1. Check if the model matches loaded model, load the model if not | |
| if model != current_model: | |
| print(f"Unloading model {current_model}...") | |
| del pipe | |
| torch.cuda.empty_cache() | |
| print(f"Loading model {model}...") | |
| pipe, _ = load_models(model) | |
| current_model = model | |
| print("Model loaded successfully!") | |
| # 2. Generate image | |
| res = parse_resolution(res) | |
| return generate_image(pipe, model, prompt, res, seed) | |
| if __name__ == "__main__": | |
| logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR) | |
| # Initialize with default model | |
| print("Loading default model (fast)...") | |
| current_model = "fast" | |
| pipe, _ = load_models(current_model) | |
| print("Model loaded successfully!") | |
| # Create Gradio interface | |
| with gr.Blocks(title="HiDream-I1-nf4 Dashboard") as demo: | |
| gr.Markdown("# HiDream-I1-nf4 Dashboard") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_type = gr.Radio( | |
| choices=list(MODEL_CONFIGS.keys()), | |
| value="fast", | |
| label="Model Type", | |
| info="Select model variant" | |
| ) | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="A cat holding a sign that says \"Hi-Dreams.ai\".", | |
| lines=3 | |
| ) | |
| resolution = gr.Radio( | |
| choices=RESOLUTION_OPTIONS, | |
| value=RESOLUTION_OPTIONS[0], | |
| label="Resolution", | |
| info="Select image resolution" | |
| ) | |
| seed = gr.Number( | |
| label="Seed (use -1 for random)", | |
| value=-1, | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button("Generate Image") | |
| seed_used = gr.Number(label="Seed Used", interactive=False) | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", type="pil") | |
| generate_btn.click( | |
| fn=gen_img_helper, | |
| inputs=[model_type, prompt, resolution, seed], | |
| outputs=[output_image, seed_used] | |
| ) | |
| demo.launch() | |