Spaces:
Running
on
Zero
Running
on
Zero
merged: zerogpu doesnt like strangers
Browse files
app.py
CHANGED
|
@@ -7,12 +7,13 @@ from gradio_imageslider import ImageSlider
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
from controlnet_union import ControlNetModel_Union
|
| 9 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
|
|
|
| 10 |
from PIL import Image, ImageDraw
|
| 11 |
import numpy as np
|
| 12 |
-
from
|
| 13 |
-
|
| 14 |
-
#from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
| 17 |
MODELS = {
|
| 18 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
|
@@ -61,6 +62,38 @@ def load_default_pipeline():
|
|
| 61 |
).to("cuda")
|
| 62 |
return gr.update(value="Default pipeline loaded!")
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
@spaces.GPU(duration=12)
|
| 65 |
def fill_image(prompt, image, model_selection, paste_back):
|
| 66 |
print(f"Received image: {image}")
|
|
@@ -489,7 +522,25 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
| 489 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 490 |
preview_image = gr.Image(label="Preview")
|
| 491 |
with gr.TabItem("SAM2 Mask"):
|
| 492 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 493 |
with gr.TabItem("Misc"):
|
| 494 |
with gr.Column():
|
| 495 |
clear_cache_button = gr.Button("Clear CUDA Cache")
|
|
|
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
from controlnet_union import ControlNetModel_Union
|
| 9 |
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
| 10 |
+
from gradio_image_prompter import ImagePrompter
|
| 11 |
from PIL import Image, ImageDraw
|
| 12 |
import numpy as np
|
| 13 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 16 |
+
SAM_MODEL = "facebook/sam2.1-hiera-large"
|
| 17 |
|
| 18 |
MODELS = {
|
| 19 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
|
|
|
| 62 |
).to("cuda")
|
| 63 |
return gr.update(value="Default pipeline loaded!")
|
| 64 |
|
| 65 |
+
@spaces.GPU()
|
| 66 |
+
def predict_masks(image, points):
|
| 67 |
+
"""Predict a single mask from the image based on selected points."""
|
| 68 |
+
image_np = np.array(image)
|
| 69 |
+
points_list = [[point["x"], point["y"]] for point in points]
|
| 70 |
+
input_labels = [1] * len(points_list)
|
| 71 |
+
|
| 72 |
+
with torch.inference_mode():
|
| 73 |
+
PREDICTOR.set_image(image_np)
|
| 74 |
+
masks, _, _ = PREDICTOR.predict(
|
| 75 |
+
point_coords=points_list, point_labels=input_labels, multimask_output=False
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Prepare the overlay image
|
| 79 |
+
red_mask = np.zeros_like(image_np)
|
| 80 |
+
if masks and len(masks) > 0:
|
| 81 |
+
red_mask[:, :, 0] = masks[0].astype(np.uint8) * 255 # Apply the red channel
|
| 82 |
+
red_mask = PILImage.fromarray(red_mask)
|
| 83 |
+
original_image = PILImage.fromarray(image_np)
|
| 84 |
+
blended_image = PILImage.blend(original_image, red_mask, alpha=0.5)
|
| 85 |
+
return np.array(blended_image)
|
| 86 |
+
else:
|
| 87 |
+
return image_np
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def update_mask(prompts):
|
| 91 |
+
"""Update the mask based on the prompts."""
|
| 92 |
+
image = prompts["image"]
|
| 93 |
+
points = prompts["points"]
|
| 94 |
+
return predict_masks(image, points)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
@spaces.GPU(duration=12)
|
| 98 |
def fill_image(prompt, image, model_selection, paste_back):
|
| 99 |
print(f"Received image: {image}")
|
|
|
|
| 522 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
| 523 |
preview_image = gr.Image(label="Preview")
|
| 524 |
with gr.TabItem("SAM2 Mask"):
|
| 525 |
+
gr.Markdown("# Object Segmentation with SAM2")
|
| 526 |
+
gr.Markdown(
|
| 527 |
+
"""
|
| 528 |
+
This application utilizes **Segment Anything V2 (SAM2)** to allow you to upload an image and interactively generate a segmentation mask based on multiple points you select on the image.
|
| 529 |
+
"""
|
| 530 |
+
)
|
| 531 |
+
with gr.Row():
|
| 532 |
+
with gr.Column():
|
| 533 |
+
upload_image_input = ImagePrompter(show_label=False)
|
| 534 |
+
with gr.Column():
|
| 535 |
+
image_output = gr.Image(label="Segmented Image", type="pil", height=400)
|
| 536 |
+
|
| 537 |
+
# Define the action triggered by the upload_image_input change
|
| 538 |
+
upload_image_input.change(
|
| 539 |
+
fn=update_mask,
|
| 540 |
+
inputs=[upload_image_input],
|
| 541 |
+
outputs=[image_output],
|
| 542 |
+
show_progress=True,
|
| 543 |
+
)
|
| 544 |
with gr.TabItem("Misc"):
|
| 545 |
with gr.Column():
|
| 546 |
clear_cache_button = gr.Button("Clear CUDA Cache")
|