Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from collections import OrderedDict | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import FromOriginalModelMixin | |
| from diffusers.models.attention_processor import ( | |
| ADDED_KV_ATTENTION_PROCESSORS, | |
| CROSS_ATTENTION_PROCESSORS, | |
| AttentionProcessor, | |
| AttnAddedKVProcessor, | |
| AttnProcessor, | |
| ) | |
| from diffusers.models.embeddings import ( | |
| TextImageProjection, | |
| TextImageTimeEmbedding, | |
| TextTimeEmbedding, | |
| TimestepEmbedding, | |
| Timesteps, | |
| ) | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.unets.unet_2d_blocks import ( | |
| CrossAttnDownBlock2D, | |
| DownBlock2D, | |
| UNetMidBlock2DCrossAttn, | |
| get_down_block, | |
| ) | |
| from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel | |
| from diffusers.utils import BaseOutput, logging | |
| from torch import nn | |
| from torch.nn import functional as F | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| # Transformer Block | |
| # Used to exchange info between different conditions and input image | |
| # With reference to https://github.com/TencentARC/T2I-Adapter/blob/SD/ldm/modules/encoders/adapter.py#L147 | |
| class QuickGELU(nn.Module): | |
| def forward(self, x: torch.Tensor): | |
| return x * torch.sigmoid(1.702 * x) | |
| class LayerNorm(nn.LayerNorm): | |
| """Subclass torch's LayerNorm to handle fp16.""" | |
| def forward(self, x: torch.Tensor): | |
| orig_type = x.dtype | |
| ret = super().forward(x) | |
| return ret.type(orig_type) | |
| class ResidualAttentionBlock(nn.Module): | |
| def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
| super().__init__() | |
| self.attn = nn.MultiheadAttention(d_model, n_head) | |
| self.ln_1 = LayerNorm(d_model) | |
| self.mlp = nn.Sequential( | |
| OrderedDict( | |
| [ | |
| ("c_fc", nn.Linear(d_model, d_model * 4)), | |
| ("gelu", QuickGELU()), | |
| ("c_proj", nn.Linear(d_model * 4, d_model)), | |
| ] | |
| ) | |
| ) | |
| self.ln_2 = LayerNorm(d_model) | |
| self.attn_mask = attn_mask | |
| def attention(self, x: torch.Tensor): | |
| self.attn_mask = ( | |
| self.attn_mask.to(dtype=x.dtype, device=x.device) | |
| if self.attn_mask is not None | |
| else None | |
| ) | |
| return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
| def forward(self, x: torch.Tensor): | |
| x = x + self.attention(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| # ----------------------------------------------------------------------------------------------------- | |
| class ControlNetOutput(BaseOutput): | |
| """ | |
| The output of [`ControlNetModel`]. | |
| Args: | |
| down_block_res_samples (`tuple[torch.Tensor]`): | |
| A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should | |
| be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be | |
| used to condition the original UNet's downsampling activations. | |
| mid_down_block_re_sample (`torch.Tensor`): | |
| The activation of the midde block (the lowest sample resolution). Each tensor should be of shape | |
| `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. | |
| Output can be used to condition the original UNet's middle block activation. | |
| """ | |
| down_block_res_samples: Tuple[torch.Tensor] | |
| mid_block_res_sample: torch.Tensor | |
| class ControlNetConditioningEmbedding(nn.Module): | |
| """ | |
| Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
| [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
| training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
| convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
| (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
| model) to encode image-space conditions ... into feature maps ..." | |
| """ | |
| # original setting is (16, 32, 96, 256) | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int, | |
| conditioning_channels: int = 3, | |
| block_out_channels: Tuple[int] = (48, 96, 192, 384), | |
| ): | |
| super().__init__() | |
| self.conv_in = nn.Conv2d( | |
| conditioning_channels, block_out_channels[0], kernel_size=3, padding=1 | |
| ) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append( | |
| nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1) | |
| ) | |
| self.blocks.append( | |
| nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2) | |
| ) | |
| self.conv_out = zero_module( | |
| nn.Conv2d( | |
| block_out_channels[-1], | |
| conditioning_embedding_channels, | |
| kernel_size=3, | |
| padding=1, | |
| ) | |
| ) | |
| def forward(self, conditioning): | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding | |
| class ControlNetModel_Union(ModelMixin, ConfigMixin, FromOriginalModelMixin): | |
| """ | |
| A ControlNet model. | |
| Args: | |
| in_channels (`int`, defaults to 4): | |
| The number of channels in the input sample. | |
| flip_sin_to_cos (`bool`, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, defaults to 0): | |
| The frequency shift to apply to the time embedding. | |
| down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): | |
| block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, defaults to 2): | |
| The number of layers per block. | |
| downsample_padding (`int`, defaults to 1): | |
| The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, defaults to 1): | |
| The scale factor to use for the mid block. | |
| act_fn (`str`, defaults to "silu"): | |
| The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the normalization. If None, normalization and activation layers is skipped | |
| in post-processing. | |
| norm_eps (`float`, defaults to 1e-5): | |
| The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, defaults to 1280): | |
| The dimension of the cross attention features. | |
| transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
| The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
| [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
| [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
| encoder_hid_dim (`int`, *optional*, defaults to None): | |
| If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
| dimension to `cross_attention_dim`. | |
| encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | |
| If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | |
| embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
| attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): | |
| The dimension of the attention heads. | |
| use_linear_projection (`bool`, defaults to `False`): | |
| class_embed_type (`str`, *optional*, defaults to `None`): | |
| The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, | |
| `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
| addition_embed_type (`str`, *optional*, defaults to `None`): | |
| Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
| "text". "text" will use the `TextTimeEmbedding` layer. | |
| num_class_embeds (`int`, *optional*, defaults to 0): | |
| Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
| class conditioning with `class_embed_type` equal to `None`. | |
| upcast_attention (`bool`, defaults to `False`): | |
| resnet_time_scale_shift (`str`, defaults to `"default"`): | |
| Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. | |
| projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): | |
| The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when | |
| `class_embed_type="projection"`. | |
| controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): | |
| The channel order of conditional image. Will convert to `rgb` if it's `bgr`. | |
| conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): | |
| The tuple of output channel for each block in the `conditioning_embedding` layer. | |
| global_pool_conditions (`bool`, defaults to `False`): | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 4, | |
| conditioning_channels: int = 3, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| transformer_layers_per_block: Union[int, Tuple[int]] = 1, | |
| encoder_hid_dim: Optional[int] = None, | |
| encoder_hid_dim_type: Optional[str] = None, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| addition_embed_type: Optional[str] = None, | |
| addition_time_embed_dim: Optional[int] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| projection_class_embeddings_input_dim: Optional[int] = None, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
| global_pool_conditions: bool = False, | |
| addition_embed_type_num_heads=64, | |
| num_control_type=6, | |
| ): | |
| super().__init__() | |
| # If `num_attention_heads` is not defined (which is the case for most models) | |
| # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. | |
| # The reason for this behavior is to correct for incorrectly named variables that were introduced | |
| # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 | |
| # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking | |
| # which is why we correct for the naming here. | |
| num_attention_heads = num_attention_heads or attention_head_dim | |
| # Check inputs | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(only_cross_attention, bool) and len( | |
| only_cross_attention | |
| ) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len( | |
| down_block_types | |
| ): | |
| raise ValueError( | |
| f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." | |
| ) | |
| if isinstance(transformer_layers_per_block, int): | |
| transformer_layers_per_block = [transformer_layers_per_block] * len( | |
| down_block_types | |
| ) | |
| # input | |
| conv_in_kernel = 3 | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = nn.Conv2d( | |
| in_channels, | |
| block_out_channels[0], | |
| kernel_size=conv_in_kernel, | |
| padding=conv_in_padding, | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| if encoder_hid_dim_type is None and encoder_hid_dim is not None: | |
| encoder_hid_dim_type = "text_proj" | |
| self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) | |
| logger.info( | |
| "encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined." | |
| ) | |
| if encoder_hid_dim is None and encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." | |
| ) | |
| if encoder_hid_dim_type == "text_proj": | |
| self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) | |
| elif encoder_hid_dim_type == "text_image_proj": | |
| # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
| # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
| # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)` | |
| self.encoder_hid_proj = TextImageProjection( | |
| text_embed_dim=encoder_hid_dim, | |
| image_embed_dim=cross_attention_dim, | |
| cross_attention_dim=cross_attention_dim, | |
| ) | |
| elif encoder_hid_dim_type is not None: | |
| raise ValueError( | |
| f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." | |
| ) | |
| else: | |
| self.encoder_hid_proj = None | |
| # class embedding | |
| if class_embed_type is None and num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
| elif class_embed_type == "timestep": | |
| self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| elif class_embed_type == "identity": | |
| self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
| elif class_embed_type == "projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
| ) | |
| # The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
| # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
| # 2. it projects from an arbitrary input dimension. | |
| # | |
| # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
| # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
| # As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
| self.class_embedding = TimestepEmbedding( | |
| projection_class_embeddings_input_dim, time_embed_dim | |
| ) | |
| else: | |
| self.class_embedding = None | |
| if addition_embed_type == "text": | |
| if encoder_hid_dim is not None: | |
| text_time_embedding_from_dim = encoder_hid_dim | |
| else: | |
| text_time_embedding_from_dim = cross_attention_dim | |
| self.add_embedding = TextTimeEmbedding( | |
| text_time_embedding_from_dim, | |
| time_embed_dim, | |
| num_heads=addition_embed_type_num_heads, | |
| ) | |
| elif addition_embed_type == "text_image": | |
| # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much | |
| # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use | |
| # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)` | |
| self.add_embedding = TextImageTimeEmbedding( | |
| text_embed_dim=cross_attention_dim, | |
| image_embed_dim=cross_attention_dim, | |
| time_embed_dim=time_embed_dim, | |
| ) | |
| elif addition_embed_type == "text_time": | |
| self.add_time_proj = Timesteps( | |
| addition_time_embed_dim, flip_sin_to_cos, freq_shift | |
| ) | |
| self.add_embedding = TimestepEmbedding( | |
| projection_class_embeddings_input_dim, time_embed_dim | |
| ) | |
| elif addition_embed_type is not None: | |
| raise ValueError( | |
| f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'." | |
| ) | |
| # control net conditioning embedding | |
| self.controlnet_cond_embedding = ControlNetConditioningEmbedding( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=conditioning_embedding_out_channels, | |
| conditioning_channels=conditioning_channels, | |
| ) | |
| # Copyright by Qi Xin(2024/07/06) | |
| # Condition Transformer(fuse single/multi conditions with input image) | |
| # The Condition Transformer augment the feature representation of conditions | |
| # The overall design is somewhat like resnet. The output of Condition Transformer is used to predict a condition bias adding to the original condition feature. | |
| # num_control_type = 6 | |
| num_trans_channel = 320 | |
| num_trans_head = 8 | |
| num_trans_layer = 1 | |
| num_proj_channel = 320 | |
| task_scale_factor = num_trans_channel**0.5 | |
| self.task_embedding = nn.Parameter( | |
| task_scale_factor * torch.randn(num_control_type, num_trans_channel) | |
| ) | |
| self.transformer_layes = nn.Sequential( | |
| *[ | |
| ResidualAttentionBlock(num_trans_channel, num_trans_head) | |
| for _ in range(num_trans_layer) | |
| ] | |
| ) | |
| self.spatial_ch_projs = zero_module( | |
| nn.Linear(num_trans_channel, num_proj_channel) | |
| ) | |
| # ----------------------------------------------------------------------------------------------------- | |
| # Copyright by Qi Xin(2024/07/06) | |
| # Control Encoder to distinguish different control conditions | |
| # A simple but effective module, consists of an embedding layer and a linear layer, to inject the control info to time embedding. | |
| self.control_type_proj = Timesteps( | |
| addition_time_embed_dim, flip_sin_to_cos, freq_shift | |
| ) | |
| self.control_add_embedding = TimestepEmbedding( | |
| addition_time_embed_dim * num_control_type, time_embed_dim | |
| ) | |
| # ----------------------------------------------------------------------------------------------------- | |
| self.down_blocks = nn.ModuleList([]) | |
| self.controlnet_down_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| if isinstance(num_attention_heads, int): | |
| num_attention_heads = (num_attention_heads,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| transformer_layers_per_block=transformer_layers_per_block[i], | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads[i], | |
| attention_head_dim=attention_head_dim[i] | |
| if attention_head_dim[i] is not None | |
| else output_channel, | |
| downsample_padding=downsample_padding, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| self.down_blocks.append(down_block) | |
| for _ in range(layers_per_block): | |
| controlnet_block = nn.Conv2d( | |
| output_channel, output_channel, kernel_size=1 | |
| ) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| if not is_final_block: | |
| controlnet_block = nn.Conv2d( | |
| output_channel, output_channel, kernel_size=1 | |
| ) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| # mid | |
| mid_block_channel = block_out_channels[-1] | |
| controlnet_block = nn.Conv2d( | |
| mid_block_channel, mid_block_channel, kernel_size=1 | |
| ) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_mid_block = controlnet_block | |
| self.mid_block = UNetMidBlock2DCrossAttn( | |
| transformer_layers_per_block=transformer_layers_per_block[-1], | |
| in_channels=mid_block_channel, | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim, | |
| num_attention_heads=num_attention_heads[-1], | |
| resnet_groups=norm_num_groups, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| def from_unet( | |
| cls, | |
| unet: UNet2DConditionModel, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
| load_weights_from_unet: bool = True, | |
| ): | |
| r""" | |
| Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`]. | |
| Parameters: | |
| unet (`UNet2DConditionModel`): | |
| The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied | |
| where applicable. | |
| """ | |
| transformer_layers_per_block = ( | |
| unet.config.transformer_layers_per_block | |
| if "transformer_layers_per_block" in unet.config | |
| else 1 | |
| ) | |
| encoder_hid_dim = ( | |
| unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None | |
| ) | |
| encoder_hid_dim_type = ( | |
| unet.config.encoder_hid_dim_type | |
| if "encoder_hid_dim_type" in unet.config | |
| else None | |
| ) | |
| addition_embed_type = ( | |
| unet.config.addition_embed_type | |
| if "addition_embed_type" in unet.config | |
| else None | |
| ) | |
| addition_time_embed_dim = ( | |
| unet.config.addition_time_embed_dim | |
| if "addition_time_embed_dim" in unet.config | |
| else None | |
| ) | |
| controlnet = cls( | |
| encoder_hid_dim=encoder_hid_dim, | |
| encoder_hid_dim_type=encoder_hid_dim_type, | |
| addition_embed_type=addition_embed_type, | |
| addition_time_embed_dim=addition_time_embed_dim, | |
| transformer_layers_per_block=transformer_layers_per_block, | |
| # transformer_layers_per_block=[1, 2, 5], | |
| in_channels=unet.config.in_channels, | |
| flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
| freq_shift=unet.config.freq_shift, | |
| down_block_types=unet.config.down_block_types, | |
| only_cross_attention=unet.config.only_cross_attention, | |
| block_out_channels=unet.config.block_out_channels, | |
| layers_per_block=unet.config.layers_per_block, | |
| downsample_padding=unet.config.downsample_padding, | |
| mid_block_scale_factor=unet.config.mid_block_scale_factor, | |
| act_fn=unet.config.act_fn, | |
| norm_num_groups=unet.config.norm_num_groups, | |
| norm_eps=unet.config.norm_eps, | |
| cross_attention_dim=unet.config.cross_attention_dim, | |
| attention_head_dim=unet.config.attention_head_dim, | |
| num_attention_heads=unet.config.num_attention_heads, | |
| use_linear_projection=unet.config.use_linear_projection, | |
| class_embed_type=unet.config.class_embed_type, | |
| num_class_embeds=unet.config.num_class_embeds, | |
| upcast_attention=unet.config.upcast_attention, | |
| resnet_time_scale_shift=unet.config.resnet_time_scale_shift, | |
| projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, | |
| controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, | |
| conditioning_embedding_out_channels=conditioning_embedding_out_channels, | |
| ) | |
| if load_weights_from_unet: | |
| controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
| controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
| controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
| if controlnet.class_embedding: | |
| controlnet.class_embedding.load_state_dict( | |
| unet.class_embedding.state_dict() | |
| ) | |
| controlnet.down_blocks.load_state_dict( | |
| unet.down_blocks.state_dict(), strict=False | |
| ) | |
| controlnet.mid_block.load_state_dict( | |
| unet.mid_block.state_dict(), strict=False | |
| ) | |
| return controlnet | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors( | |
| name: str, | |
| module: torch.nn.Module, | |
| processors: Dict[str, AttentionProcessor], | |
| ): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor( | |
| return_deprecated_lora=True | |
| ) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor( | |
| self, | |
| processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], | |
| _remove_lora=False, | |
| ): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor, _remove_lora=_remove_lora) | |
| else: | |
| module.set_processor( | |
| processor.pop(f"{name}.processor"), _remove_lora=_remove_lora | |
| ) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor | |
| def set_default_attn_processor(self): | |
| """ | |
| Disables custom attention processors and sets the default attention implementation. | |
| """ | |
| if all( | |
| proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS | |
| for proc in self.attn_processors.values() | |
| ): | |
| processor = AttnAddedKVProcessor() | |
| elif all( | |
| proc.__class__ in CROSS_ATTENTION_PROCESSORS | |
| for proc in self.attn_processors.values() | |
| ): | |
| processor = AttnProcessor() | |
| else: | |
| raise ValueError( | |
| f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" | |
| ) | |
| self.set_attn_processor(processor, _remove_lora=True) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module splits the input tensor in slices to compute attention in | |
| several steps. This is useful for saving some memory in exchange for a small decrease in speed. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If | |
| `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = ( | |
| num_sliceable_layers * [slice_size] | |
| if not isinstance(slice_size, list) | |
| else slice_size | |
| ) | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice( | |
| module: torch.nn.Module, slice_size: List[int] | |
| ): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| controlnet_cond_list: torch.FloatTensor, | |
| conditioning_scale: float = 1.0, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guess_mode: bool = False, | |
| return_dict: bool = True, | |
| ) -> Union[ControlNetOutput, Tuple]: | |
| """ | |
| The [`ControlNetModel`] forward method. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The noisy input tensor. | |
| timestep (`Union[torch.Tensor, float, int]`): | |
| The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.Tensor`): | |
| The encoder hidden states. | |
| controlnet_cond (`torch.FloatTensor`): | |
| The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
| conditioning_scale (`float`, defaults to `1.0`): | |
| The scale factor for ControlNet outputs. | |
| class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
| Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
| timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
| Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the | |
| timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep | |
| embeddings. | |
| attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| added_cond_kwargs (`dict`): | |
| Additional conditions for the Stable Diffusion XL UNet. | |
| cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
| guess_mode (`bool`, defaults to `False`): | |
| In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
| you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
| return_dict (`bool`, defaults to `True`): | |
| Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.controlnet.ControlNetOutput`] **or** `tuple`: | |
| If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
| returned where the first element is the sample tensor. | |
| """ | |
| # check channel order | |
| channel_order = self.config.controlnet_conditioning_channel_order | |
| if channel_order == "rgb": | |
| # in rgb order by default | |
| ... | |
| # elif channel_order == "bgr": | |
| # controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
| else: | |
| raise ValueError( | |
| f"unknown `controlnet_conditioning_channel_order`: {channel_order}" | |
| ) | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| aug_emb = None | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError( | |
| "class_labels should be provided when num_class_embeds > 0" | |
| ) | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| if self.config.addition_embed_type is not None: | |
| if self.config.addition_embed_type == "text": | |
| aug_emb = self.add_embedding(encoder_hidden_states) | |
| elif self.config.addition_embed_type == "text_time": | |
| if "text_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| text_embeds = added_cond_kwargs.get("text_embeds") | |
| if "time_ids" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
| ) | |
| time_ids = added_cond_kwargs.get("time_ids") | |
| time_embeds = self.add_time_proj(time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
| add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
| add_embeds = add_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(add_embeds) | |
| # Copyright by Qi Xin(2024/07/06) | |
| # inject control type info to time embedding to distinguish different control conditions | |
| control_type = added_cond_kwargs.get("control_type") | |
| control_embeds = self.control_type_proj(control_type.flatten()) | |
| control_embeds = control_embeds.reshape((t_emb.shape[0], -1)) | |
| control_embeds = control_embeds.to(emb.dtype) | |
| control_emb = self.control_add_embedding(control_embeds) | |
| emb = emb + control_emb | |
| # --------------------------------------------------------------------------------- | |
| emb = emb + aug_emb if aug_emb is not None else emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| indices = torch.nonzero(control_type[0]) | |
| # Copyright by Qi Xin(2024/07/06) | |
| # add single/multi conditons to input image. | |
| # Condition Transformer provides an easy and effective way to fuse different features naturally | |
| inputs = [] | |
| condition_list = [] | |
| for idx in range(indices.shape[0] + 1): | |
| if idx == indices.shape[0]: | |
| controlnet_cond = sample | |
| feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C | |
| else: | |
| controlnet_cond = self.controlnet_cond_embedding( | |
| controlnet_cond_list[indices[idx][0]] | |
| ) | |
| feat_seq = torch.mean(controlnet_cond, dim=(2, 3)) # N * C | |
| feat_seq = feat_seq + self.task_embedding[indices[idx][0]] | |
| inputs.append(feat_seq.unsqueeze(1)) | |
| condition_list.append(controlnet_cond) | |
| x = torch.cat(inputs, dim=1) # NxLxC | |
| x = self.transformer_layes(x) | |
| controlnet_cond_fuser = sample * 0.0 | |
| for idx in range(indices.shape[0]): | |
| alpha = self.spatial_ch_projs(x[:, idx]) | |
| alpha = alpha.unsqueeze(-1).unsqueeze(-1) | |
| controlnet_cond_fuser += condition_list[idx] + alpha | |
| sample = sample + controlnet_cond_fuser | |
| # ------------------------------------------------------------------------------------------- | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if ( | |
| hasattr(downsample_block, "has_cross_attention") | |
| and downsample_block.has_cross_attention | |
| ): | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| # 5. Control net blocks | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip( | |
| down_block_res_samples, self.controlnet_down_blocks | |
| ): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples = controlnet_down_block_res_samples + ( | |
| down_block_res_sample, | |
| ) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| if guess_mode and not self.config.global_pool_conditions: | |
| scales = torch.logspace( | |
| -1, 0, len(down_block_res_samples) + 1, device=sample.device | |
| ) # 0.1 to 1.0 | |
| scales = scales * conditioning_scale | |
| down_block_res_samples = [ | |
| sample * scale for sample, scale in zip(down_block_res_samples, scales) | |
| ] | |
| mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
| else: | |
| down_block_res_samples = [ | |
| sample * conditioning_scale for sample in down_block_res_samples | |
| ] | |
| mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
| if self.config.global_pool_conditions: | |
| down_block_res_samples = [ | |
| torch.mean(sample, dim=(2, 3), keepdim=True) | |
| for sample in down_block_res_samples | |
| ] | |
| mid_block_res_sample = torch.mean( | |
| mid_block_res_sample, dim=(2, 3), keepdim=True | |
| ) | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return ControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, | |
| mid_block_res_sample=mid_block_res_sample, | |
| ) | |
| def zero_module(module): | |
| for p in module.parameters(): | |
| nn.init.zeros_(p) | |
| return module |