Spaces:
Running
on
Zero
Running
on
Zero
LPX55
♻️ refactor(app): refactor and restructure the application code for better organization and maintainability
c4bfaad
| import gradio as gr | |
| import spaces | |
| import torch | |
| from diffusers import AutoencoderKL, TCDScheduler | |
| from diffusers.models.model_loading_utils import load_state_dict | |
| from gradio_imageslider import ImageSlider | |
| from huggingface_hub import hf_hub_download | |
| from controlnet_union import ControlNetModel_Union | |
| from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline | |
| from PIL import Image, ImageDraw | |
| import numpy as np | |
| MODELS = { | |
| "RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning", | |
| "Lustify Lightning": "GraydientPlatformAPI/lustify-lightning", | |
| "Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning", | |
| } | |
| config_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="config_promax.json", | |
| ) | |
| config = ControlNetModel_Union.load_config(config_file) | |
| controlnet_model = ControlNetModel_Union.from_config(config) | |
| model_file = hf_hub_download( | |
| "xinsir/controlnet-union-sdxl-1.0", | |
| filename="diffusion_pytorch_model_promax.safetensors", | |
| ) | |
| state_dict = load_state_dict(model_file) | |
| model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model( | |
| controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0" | |
| ) | |
| model.to(device="cuda", dtype=torch.float16) | |
| vae = AutoencoderKL.from_pretrained( | |
| "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16 | |
| ).to("cuda") | |
| # Move pipeline loading into a function to enable lazy loading | |
| def load_pipeline(model_name): | |
| pipe = StableDiffusionXLFillPipeline.from_pretrained( | |
| MODELS[model_name], | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| controlnet=model, | |
| ) | |
| pipe.to("cuda") | |
| pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config) | |
| return pipe | |
| def can_expand(source_width, source_height, target_width, target_height, alignment): | |
| """Checks if the image can be expanded based on the alignment.""" | |
| if alignment in ("Left", "Right") and source_width >= target_width: | |
| return False | |
| if alignment in ("Top", "Bottom") and source_height >= target_height: | |
| return False | |
| return True | |
| def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
| target_size = (width, height) | |
| # Calculate the scaling factor to fit the image within the target size | |
| scale_factor = min(target_size[0] / image.width, target_size[1] / image.height) | |
| new_width = int(image.width * scale_factor) | |
| new_height = int(image.height * scale_factor) | |
| # Resize the source image to fit within target size | |
| source = image.resize((new_width, new_height), Image.LANCZOS) | |
| # Apply resize option using percentages | |
| if resize_option == "Full": | |
| resize_percentage = 100 | |
| elif resize_option == "50%": | |
| resize_percentage = 50 | |
| elif resize_option == "33%": | |
| resize_percentage = 33 | |
| elif resize_option == "25%": | |
| resize_percentage = 25 | |
| else: # Custom | |
| resize_percentage = custom_resize_percentage | |
| # Calculate new dimensions based on percentage | |
| resize_factor = resize_percentage / 100 | |
| new_width = int(source.width * resize_factor) | |
| new_height = int(source.height * resize_factor) | |
| # Ensure minimum size of 64 pixels | |
| new_width = max(new_width, 64) | |
| new_height = max(new_height, 64) | |
| # Resize the image | |
| source = source.resize((new_width, new_height), Image.LANCZOS) | |
| # Calculate the overlap in pixels based on the percentage | |
| overlap_x = int(new_width * (overlap_percentage / 100)) | |
| overlap_y = int(new_height * (overlap_percentage / 100)) | |
| # Ensure minimum overlap of 1 pixel | |
| overlap_x = max(overlap_x, 1) | |
| overlap_y = max(overlap_y, 1) | |
| # Calculate margins based on alignment | |
| if alignment == "Middle": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Left": | |
| margin_x = 0 | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Right": | |
| margin_x = target_size[0] - new_width | |
| margin_y = (target_size[1] - new_height) // 2 | |
| elif alignment == "Top": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = 0 | |
| elif alignment == "Bottom": | |
| margin_x = (target_size[0] - new_width) // 2 | |
| margin_y = target_size[1] - new_height | |
| # Adjust margins to eliminate gaps | |
| margin_x = max(0, min(margin_x, target_size[0] - new_width)) | |
| margin_y = max(0, min(margin_y, target_size[1] - new_height)) | |
| # Create a new background image and paste the resized source image | |
| background = Image.new('RGB', target_size, (255, 255, 255)) | |
| background.paste(source, (margin_x, margin_y)) | |
| # Create the mask | |
| mask = Image.new('L', target_size, 255) | |
| mask_draw = ImageDraw.Draw(mask) | |
| # Calculate overlap areas | |
| white_gaps_patch = 2 | |
| left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch | |
| right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch | |
| top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch | |
| bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch | |
| if alignment == "Left": | |
| left_overlap = margin_x + overlap_x if overlap_left else margin_x | |
| elif alignment == "Right": | |
| right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width | |
| elif alignment == "Top": | |
| top_overlap = margin_y + overlap_y if overlap_top else margin_y | |
| elif alignment == "Bottom": | |
| bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height | |
| # Draw the mask | |
| mask_draw.rectangle([ | |
| (left_overlap, top_overlap), | |
| (right_overlap, bottom_overlap) | |
| ], fill=0) | |
| return background, mask | |
| def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
| background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
| # Create a preview image showing the mask | |
| preview = background.copy().convert('RGBA') | |
| # Create a semi-transparent red overlay | |
| red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64)) # Reduced alpha to 64 (25% opacity) | |
| # Convert black pixels in the mask to semi-transparent red | |
| red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0)) | |
| red_mask.paste(red_overlay, (0, 0), mask) | |
| # Overlay the red mask on the background | |
| preview = Image.alpha_composite(preview, red_mask) | |
| return preview | |
| def inpaint(prompt, image, model_name, paste_back): | |
| global pipe | |
| if pipe.config.model_name != MODELS[model_name]: | |
| # Lazily load the pipeline for the selected model | |
| pipe = load_pipeline(model_name) | |
| mask = Image.fromarray(image["mask"]).convert("L") | |
| image = Image.fromarray(image["image"]) | |
| result = pipe(prompt=prompt, image=image, mask_image=mask).images[0] | |
| if paste_back: | |
| result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask))) | |
| return result | |
| def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom): | |
| # Use the currently loaded pipeline | |
| background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom) | |
| if not can_expand(background.width, background.height, width, height, alignment): | |
| alignment = "Middle" | |
| cnet_image = background.copy() | |
| cnet_image.paste(0, (0, 0), mask) | |
| final_prompt = f"{prompt_input} , high quality, 4k" | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = pipe.encode_prompt(final_prompt, "cuda", True) | |
| for image in pipe( | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| image=cnet_image, | |
| num_inference_steps=num_inference_steps | |
| ): | |
| yield cnet_image, image | |
| image = image.convert("RGBA") | |
| cnet_image.paste(image, (0, 0), mask) | |
| yield background, cnet_image | |
| def clear_result(): | |
| """Clears the result ImageSlider.""" | |
| return gr.update(value=None) | |
| def preload_presets(target_ratio, ui_width, ui_height): | |
| """Updates the width and height sliders based on the selected aspect ratio.""" | |
| if target_ratio == "9:16": | |
| changed_width = 720 | |
| changed_height = 1280 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "16:9": | |
| changed_width = 1280 | |
| changed_height = 720 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "1:1": | |
| changed_width = 1024 | |
| changed_height = 1024 | |
| return changed_width, changed_height, gr.update() | |
| elif target_ratio == "Custom": | |
| return ui_width, ui_height, gr.update(open=True) | |
| def select_the_right_preset(user_width, user_height): | |
| if user_width == 720 and user_height == 1280: | |
| return "9:16" | |
| elif user_width == 1280 and user_height == 720: | |
| return "16:9" | |
| elif user_width == 1024 and user_height == 1024: | |
| return "1:1" | |
| else: | |
| return "Custom" | |
| def toggle_custom_resize_slider(resize_option): | |
| return gr.update(visible=(resize_option == "Custom")) | |
| def update_history(new_image, history): | |
| """Updates the history gallery with the new image.""" | |
| if history is None: | |
| history = [] | |
| history.insert(0, new_image) | |
| return history | |
| css = """ | |
| .gradio-container { | |
| width: 1200px !important; | |
| } | |
| """ | |
| title = """<h1 align="center">Diffusers Image Outpaint</h1> | |
| <div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div> | |
| <div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
| <p style="display: flex;gap: 6px;"> | |
| <a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space"> | |
| </a> to skip the queue and enjoy faster inference on the GPU of your choice | |
| </p> | |
| </div> | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown("# Diffusers Inpaint and Outpaint") | |
| with gr.Tabs(): | |
| with gr.TabItem("Inpaint"): | |
| with gr.Column(): | |
| # inpaint_image = gr.Image(type="pil", label="Input Image", tool="sketch") | |
| inpaint_image = gr.ImageEditor(type="pil", label="Input Image") | |
| inpaint_prompt = gr.Textbox(label="Prompt", info="Describe what to inpaint the mask with", lines=3) | |
| inpaint_model = gr.Dropdown(choices=list(MODELS.keys()), value="RealVisXL V5.0 Lightning", label="Model") | |
| inpaint_paste_back = gr.Checkbox(True, label="Paste back original") | |
| inpaint_button = gr.Button("Generate Inpaint") | |
| inpaint_result = ImageSlider(label="Inpaint Result") | |
| with gr.TabItem("Outpaint"): | |
| with gr.Column(): | |
| outpaint_image = gr.Image(type="pil", label="Input Image") | |
| outpaint_prompt = gr.Textbox(label="Prompt (Optional)") | |
| with gr.Row(): | |
| width_slider = gr.Slider(label="Target Width", minimum=720, maximum=1536, step=8, value=720) | |
| height_slider = gr.Slider(label="Target Height", minimum=720, maximum=1536, step=8, value=1280) | |
| alignment_dropdown = gr.Dropdown(choices=["Middle", "Left", "Right", "Top", "Bottom"], value="Middle", label="Alignment") | |
| with gr.Accordion("Advanced settings", open=False): | |
| num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8) | |
| overlap_percentage = gr.Slider(label="Mask overlap (%)", minimum=1, maximum=50, value=10, step=1) | |
| with gr.Row(): | |
| overlap_top = gr.Checkbox(label="Overlap Top", value=True) | |
| overlap_right = gr.Checkbox(label="Overlap Right", value=True) | |
| with gr.Row(): | |
| overlap_left = gr.Checkbox(label="Overlap Left", value=True) | |
| overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True) | |
| resize_option = gr.Radio(label="Resize input image", choices=["Full", "50%", "33%", "25%", "Custom"], value="Full") | |
| custom_resize_percentage = gr.Slider(label="Custom resize (%)", minimum=1, maximum=100, step=1, value=50, visible=False) | |
| outpaint_button = gr.Button("Generate Outpaint") | |
| preview_button = gr.Button("Preview alignment and mask") | |
| outpaint_result = ImageSlider(label="Outpaint Result") | |
| preview_image = gr.Image(label="Preview") | |
| # Set up event handlers | |
| inpaint_button.click( | |
| fn=inpaint, | |
| inputs=[inpaint_prompt, inpaint_image, inpaint_model, inpaint_paste_back], | |
| outputs=inpaint_result | |
| ) | |
| outpaint_button.click( | |
| fn=outpaint, | |
| inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, num_inference_steps, | |
| resize_option, custom_resize_percentage, outpaint_prompt, alignment_dropdown, | |
| overlap_left, overlap_right, overlap_top, overlap_bottom], | |
| outputs=outpaint_result | |
| ) | |
| preview_button.click( | |
| fn=preview_image_and_mask, | |
| inputs=[outpaint_image, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown, | |
| overlap_left, overlap_right, overlap_top, overlap_bottom], | |
| outputs=preview_image | |
| ) | |
| resize_option.change( | |
| fn=lambda x: gr.update(visible=(x == "Custom")), | |
| inputs=[resize_option], | |
| outputs=[custom_resize_percentage] | |
| ) | |
| demo.launch(share=False) |