Spaces:
Running
on
Zero
Running
on
Zero
LPX
commited on
Commit
·
15c3cb0
1
Parent(s):
0749e05
temp: attempt to upload half-precision .safetensors file
Browse files- README.md +1 -1
- float16.py +330 -0
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
|
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.35.0
|
8 |
-
app_file:
|
9 |
pinned: true
|
10 |
short_description: Inspired by our 8-Step FLUX Merged/Fusion Models
|
11 |
---
|
|
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.35.0
|
8 |
+
app_file: float16.py
|
9 |
pinned: true
|
10 |
short_description: Inspired by our 8-Step FLUX Merged/Fusion Models
|
11 |
---
|
float16.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import os
|
7 |
+
import subprocess
|
8 |
+
import logging
|
9 |
+
import safetensors
|
10 |
+
#####################################################
|
11 |
+
# Forced Diffusers upgrade when cache was being stubborn; probably not needed now
|
12 |
+
# force = subprocess.run("pip install -U diffusers", shell=True)
|
13 |
+
# force = subprocess.run("pip install git+https://github.com/huggingface/diffusers.git", shell=True)
|
14 |
+
# force = subprocess.run("pip install git+https://github.com/huggingface/transformers.git", shell=True)
|
15 |
+
force = subprocess.run("git lfs install", shell=True)
|
16 |
+
|
17 |
+
#####################################################
|
18 |
+
import transformers
|
19 |
+
import diffusers
|
20 |
+
from diffusers import DiffusionPipeline
|
21 |
+
import bitsandbytes
|
22 |
+
from diffusers.quantizers import PipelineQuantizationConfig
|
23 |
+
from diffusers.utils import load_image
|
24 |
+
from diffusers import FluxKontextPipeline
|
25 |
+
from PIL import Image
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
from huggingface_hub import create_repo, upload_folder
|
28 |
+
from huggingface_hub.utils._runtime import dump_environment_info
|
29 |
+
from safetensors import safe_open
|
30 |
+
|
31 |
+
#####################################################
|
32 |
+
|
33 |
+
MAX_SEED = np.iinfo(np.int32).max
|
34 |
+
API_TOKEN = os.environ['HF_TOKEN']
|
35 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
|
37 |
+
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
|
38 |
+
os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1')
|
39 |
+
|
40 |
+
dump_environment_info()
|
41 |
+
logging.basicConfig(level=logging.DEBUG)
|
42 |
+
logger = logging.getLogger(__name__)
|
43 |
+
|
44 |
+
#####################################################
|
45 |
+
|
46 |
+
# TESTING TWO QUANTIZATION METHODS
|
47 |
+
# 1) If FP8 is supported; `torchao` for quantization
|
48 |
+
# quant_config = PipelineQuantizationConfig(
|
49 |
+
# quant_backend="torchao",
|
50 |
+
# quant_kwargs={"quant_type": "float8dq_e4m3_row"},
|
51 |
+
# components_to_quantize=["transformer"]
|
52 |
+
# )
|
53 |
+
# 2) Otherwise, standard 4-bit quantization with bitsandbytes
|
54 |
+
# quant_config = PipelineQuantizationConfig(
|
55 |
+
# quant_backend="bitsandbytes_4bit",
|
56 |
+
# quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"},
|
57 |
+
# components_to_quantize=["transformer"]
|
58 |
+
# )
|
59 |
+
|
60 |
+
try:
|
61 |
+
# Set max memory usage for ZeroGPU
|
62 |
+
torch.cuda.set_per_process_memory_fraction(1.0)
|
63 |
+
torch.set_float32_matmul_precision("high")
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error setting memory usage: {e}")
|
66 |
+
|
67 |
+
#####################################################
|
68 |
+
# Load the pipeline with the specified quantization configuration.
|
69 |
+
# We use bfloat16 as the base dtype for mixed-precision inference.
|
70 |
+
# HF Spaces VRAM (50 GB) is sufficient to hold the entire pipeline (31.424 GB),
|
71 |
+
# Leave the entire pipeline to the GPU for the best performance.
|
72 |
+
|
73 |
+
# FLUX.1 Dev Kontext Lightning Model / 8-Steps
|
74 |
+
kontext_model = "LPX55/FLUX.1_Kontext-Lightning"
|
75 |
+
pipe = FluxKontextPipeline.from_pretrained(
|
76 |
+
"LPX55/FLUX.1_Kontext-Lightning",
|
77 |
+
torch_dtype=torch.float16
|
78 |
+
).to("cuda")
|
79 |
+
# Save as a single `.safetensors` file
|
80 |
+
pipe.save_pretrained(
|
81 |
+
"./flux_16bit",
|
82 |
+
safe_serialization=True,
|
83 |
+
max_shard_size="100GB" # Forces all shards into one file (no split files)
|
84 |
+
)
|
85 |
+
|
86 |
+
local_folder = "./flux_16bit"
|
87 |
+
hub_repo_name = "LPX55/FLUX.1_Kontext-Lightning"
|
88 |
+
|
89 |
+
# create_repo(hub_repo_name, exist_ok=True, private=False)
|
90 |
+
|
91 |
+
with safe_open("./flux_16bit/model.safetensors", framework="pt", device="cuda") as f:
|
92 |
+
for k in f.keys():
|
93 |
+
print(k, f.get_slice(k).shape)
|
94 |
+
|
95 |
+
upload_folder(
|
96 |
+
folder_path=local_folder,
|
97 |
+
path_in_repo="float16",
|
98 |
+
repo_id=hub_repo_name,
|
99 |
+
repo_type="model",
|
100 |
+
commit_message="Upload half-precision FLUX.1 Kontext Lightning model",
|
101 |
+
token=API_TOKEN
|
102 |
+
)
|
103 |
+
###################################################
|
104 |
+
# SECTION FOR LORA(S); SKIP FOR NOW
|
105 |
+
|
106 |
+
# try:
|
107 |
+
# repo_name = ""
|
108 |
+
# ckpt_name = ""
|
109 |
+
# pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name), adapter_name="A1")
|
110 |
+
# pipe.set_adapters(["A1"], adapter_weights=[0.5])
|
111 |
+
# pipe.fuse_lora(adapter_names=["A1"], lora_scale=1.0)
|
112 |
+
# pipe.unload_lora_weights()
|
113 |
+
|
114 |
+
# except Exception as e:
|
115 |
+
# print(f"Error while loading Lora: {e}")
|
116 |
+
|
117 |
+
#####################################################
|
118 |
+
def concatenate_images(images, direction="horizontal"):
|
119 |
+
"""
|
120 |
+
Concatenate multiple PIL images either horizontally or vertically.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
images: List of PIL Images
|
124 |
+
direction: "horizontal" or "vertical"
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
PIL Image: Concatenated image
|
128 |
+
"""
|
129 |
+
if not images:
|
130 |
+
return None
|
131 |
+
|
132 |
+
# Filter out None images
|
133 |
+
valid_images = [img for img in images if img is not None]
|
134 |
+
|
135 |
+
if not valid_images:
|
136 |
+
return None
|
137 |
+
|
138 |
+
if len(valid_images) == 1:
|
139 |
+
return valid_images[0].convert("RGB")
|
140 |
+
|
141 |
+
# Convert all images to RGB
|
142 |
+
valid_images = [img.convert("RGB") for img in valid_images]
|
143 |
+
|
144 |
+
if direction == "horizontal":
|
145 |
+
# Calculate total width and max height
|
146 |
+
total_width = sum(img.width for img in valid_images)
|
147 |
+
max_height = max(img.height for img in valid_images)
|
148 |
+
|
149 |
+
# Create new image
|
150 |
+
concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255))
|
151 |
+
|
152 |
+
# Paste images
|
153 |
+
x_offset = 0
|
154 |
+
for img in valid_images:
|
155 |
+
# Center image vertically if heights differ
|
156 |
+
y_offset = (max_height - img.height) // 2
|
157 |
+
concatenated.paste(img, (x_offset, y_offset))
|
158 |
+
x_offset += img.width
|
159 |
+
|
160 |
+
else: # vertical
|
161 |
+
# Calculate max width and total height
|
162 |
+
max_width = max(img.width for img in valid_images)
|
163 |
+
total_height = sum(img.height for img in valid_images)
|
164 |
+
|
165 |
+
# Create new image
|
166 |
+
concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255))
|
167 |
+
|
168 |
+
# Paste images
|
169 |
+
y_offset = 0
|
170 |
+
for img in valid_images:
|
171 |
+
# Center image horizontally if widths differ
|
172 |
+
x_offset = (max_width - img.width) // 2
|
173 |
+
concatenated.paste(img, (x_offset, y_offset))
|
174 |
+
y_offset += img.height
|
175 |
+
|
176 |
+
return concatenated
|
177 |
+
|
178 |
+
@spaces.GPU
|
179 |
+
@torch.no_grad()
|
180 |
+
def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=8, width=1024, height=1024, progress=gr.Progress(track_tqdm=True)):
|
181 |
+
|
182 |
+
if randomize_seed:
|
183 |
+
seed = random.randint(0, MAX_SEED)
|
184 |
+
|
185 |
+
# Handle input_images - it could be a single image or a list of images
|
186 |
+
if input_images is None:
|
187 |
+
raise gr.Error("Please upload at least one image.")
|
188 |
+
|
189 |
+
# If it's a single image (not a list), convert to list
|
190 |
+
if not isinstance(input_images, list):
|
191 |
+
input_images = [input_images]
|
192 |
+
|
193 |
+
# Filter out None images
|
194 |
+
valid_images = [img[0] for img in input_images if img is not None]
|
195 |
+
|
196 |
+
if not valid_images:
|
197 |
+
raise gr.Error("Please upload at least one valid image.")
|
198 |
+
|
199 |
+
# Concatenate images horizontally
|
200 |
+
concatenated_image = concatenate_images(valid_images, "horizontal")
|
201 |
+
|
202 |
+
if concatenated_image is None:
|
203 |
+
raise gr.Error("Failed to process the input images.")
|
204 |
+
|
205 |
+
# original_width, original_height = concatenated_image.size
|
206 |
+
|
207 |
+
# if original_width >= original_height:
|
208 |
+
# new_width = 1024
|
209 |
+
# new_height = int(original_height * (new_width / original_width))
|
210 |
+
# new_height = round(new_height / 64) * 64
|
211 |
+
# else:
|
212 |
+
# new_height = 1024
|
213 |
+
# new_width = int(original_width * (new_height / original_height))
|
214 |
+
# new_width = round(new_width / 64) * 64
|
215 |
+
|
216 |
+
#concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS)
|
217 |
+
|
218 |
+
final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources."
|
219 |
+
|
220 |
+
image = pipe(
|
221 |
+
image=concatenated_image,
|
222 |
+
prompt=final_prompt,
|
223 |
+
guidance_scale=guidance_scale,
|
224 |
+
width=width,
|
225 |
+
height=height,
|
226 |
+
max_area=width * height,
|
227 |
+
num_inference_steps=steps,
|
228 |
+
generator=torch.Generator().manual_seed(seed),
|
229 |
+
).images[0]
|
230 |
+
|
231 |
+
return image, seed, gr.update(visible=True)
|
232 |
+
|
233 |
+
css="""
|
234 |
+
#col-container {
|
235 |
+
margin: 0 auto;
|
236 |
+
max-width: 86vw;
|
237 |
+
}
|
238 |
+
"""
|
239 |
+
|
240 |
+
with gr.Blocks(css=css) as demo:
|
241 |
+
|
242 |
+
with gr.Column(elem_id="col-container"):
|
243 |
+
gr.Markdown(f"""# FLUX.1 Kontext | Lightning 8-Step Model ⚡
|
244 |
+
""")
|
245 |
+
with gr.Row():
|
246 |
+
with gr.Column():
|
247 |
+
input_images = gr.Gallery(
|
248 |
+
label="Upload image(s) for editing",
|
249 |
+
show_label=True,
|
250 |
+
elem_id="gallery_input",
|
251 |
+
columns=3,
|
252 |
+
rows=2,
|
253 |
+
object_fit="contain",
|
254 |
+
height="auto",
|
255 |
+
file_types=['image'],
|
256 |
+
type='pil'
|
257 |
+
)
|
258 |
+
|
259 |
+
with gr.Row():
|
260 |
+
prompt = gr.Text(
|
261 |
+
label="Prompt",
|
262 |
+
show_label=False,
|
263 |
+
max_lines=1,
|
264 |
+
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
|
265 |
+
container=False,
|
266 |
+
)
|
267 |
+
run_button = gr.Button("Run", scale=0)
|
268 |
+
|
269 |
+
with gr.Accordion("Advanced Settings", open=True):
|
270 |
+
|
271 |
+
with gr.Group():
|
272 |
+
width = gr.Slider(
|
273 |
+
label="W",
|
274 |
+
minimum=512,
|
275 |
+
maximum=2560,
|
276 |
+
step=64,
|
277 |
+
value=1024,
|
278 |
+
)
|
279 |
+
|
280 |
+
height = gr.Slider(
|
281 |
+
label="H",
|
282 |
+
minimum=512,
|
283 |
+
maximum=2560,
|
284 |
+
step=64,
|
285 |
+
value=1024,
|
286 |
+
)
|
287 |
+
|
288 |
+
seed = gr.Slider(
|
289 |
+
label="Seed",
|
290 |
+
minimum=0,
|
291 |
+
maximum=MAX_SEED,
|
292 |
+
step=1,
|
293 |
+
value=0,
|
294 |
+
)
|
295 |
+
|
296 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
297 |
+
|
298 |
+
guidance_scale = gr.Slider(
|
299 |
+
label="Guidance Scale",
|
300 |
+
minimum=1,
|
301 |
+
maximum=10,
|
302 |
+
step=0.1,
|
303 |
+
value=2.5,
|
304 |
+
)
|
305 |
+
input_steps = gr.Slider(
|
306 |
+
label="Steps",
|
307 |
+
minimum=1,
|
308 |
+
maximum=30,
|
309 |
+
step=1,
|
310 |
+
value=16,
|
311 |
+
)
|
312 |
+
|
313 |
+
with gr.Column():
|
314 |
+
result = gr.Image(label="Result", show_label=False, interactive=False)
|
315 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
316 |
+
|
317 |
+
gr.on(
|
318 |
+
triggers=[run_button.click, prompt.submit],
|
319 |
+
fn = infer,
|
320 |
+
inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, input_steps, width, height],
|
321 |
+
outputs = [result, seed, reuse_button]
|
322 |
+
)
|
323 |
+
|
324 |
+
reuse_button.click(
|
325 |
+
fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery
|
326 |
+
inputs = [result],
|
327 |
+
outputs = [input_images]
|
328 |
+
)
|
329 |
+
|
330 |
+
demo.queue().launch()
|