Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| import os | |
| import subprocess | |
| import logging | |
| ##################################################### | |
| # Forced Diffusers upgrade when cache was being stubborn; probably not needed now | |
| force = subprocess.run("pip install -U diffusers", shell=True) | |
| force = subprocess.run("pip install git+https://github.com/huggingface/diffusers.git", shell=True) | |
| force = subprocess.run("pip install git+https://github.com/huggingface/transformers.git", shell=True) | |
| ##################################################### | |
| import transformers | |
| import diffusers | |
| from diffusers import DiffusionPipeline | |
| import bitsandbytes | |
| from diffusers.quantizers import PipelineQuantizationConfig | |
| from diffusers.utils import load_image | |
| from diffusers import FluxKontextPipeline | |
| from PIL import Image | |
| from huggingface_hub import hf_hub_download | |
| from huggingface_hub.utils._runtime import dump_environment_info | |
| ##################################################### | |
| MAX_SEED = np.iinfo(np.int32).max | |
| API_TOKEN = os.environ['HF_TOKEN'] | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False') | |
| os.environ.setdefault('HF_HUB_DISABLE_TELEMETRY', '1') | |
| dump_environment_info() | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger(__name__) | |
| ##################################################### | |
| # TESTING TWO QUANTIZATION METHODS | |
| # 1) If FP8 is supported; `torchao` for quantization | |
| # quant_config = PipelineQuantizationConfig( | |
| # quant_backend="torchao", | |
| # quant_kwargs={"quant_type": "float8dq_e4m3_row"}, | |
| # components_to_quantize=["transformer"] | |
| # ) | |
| # 2) Otherwise, standard 4-bit quantization with bitsandbytes | |
| quant_config = PipelineQuantizationConfig( | |
| quant_backend="bitsandbytes_4bit", | |
| quant_kwargs={"load_in_4bit": True, "bnb_4bit_compute_dtype": torch.bfloat16, "bnb_4bit_quant_type": "nf4"}, | |
| components_to_quantize=["transformer"] | |
| ) | |
| try: | |
| # Set max memory usage for ZeroGPU | |
| torch.cuda.set_per_process_memory_fraction(1.0) | |
| torch.set_float32_matmul_precision("high") | |
| except Exception as e: | |
| print(f"Error setting memory usage: {e}") | |
| ##################################################### | |
| # Load the pipeline with the specified quantization configuration. | |
| # We use bfloat16 as the base dtype for mixed-precision inference. | |
| # HF Spaces VRAM (50 GB) is sufficient to hold the entire pipeline (31.424 GB), | |
| # Leave the entire pipeline to the GPU for the best performance. | |
| # FLUX.1 Dev Kontext Lightning Model / 8-Steps | |
| kontext_model = "LPX55/FLUX.1_Kontext-Lightning" | |
| pipe = FluxKontextPipeline.from_pretrained( | |
| kontext_model, | |
| quantization_config=quant_config, | |
| torch_dtype=torch.bfloat16 | |
| ).to(DEVICE) | |
| ##################################################### | |
| # SECTION FOR LORA(S); SKIP FOR NOW | |
| # try: | |
| # repo_name = "" | |
| # ckpt_name = "" | |
| # pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name), adapter_name="A1") | |
| # pipe.set_adapters(["A1"], adapter_weights=[0.5]) | |
| # pipe.fuse_lora(adapter_names=["A1"], lora_scale=1.0) | |
| # pipe.unload_lora_weights() | |
| # except Exception as e: | |
| # print(f"Error while loading Lora: {e}") | |
| ##################################################### | |
| def concatenate_images(images, direction="horizontal"): | |
| """ | |
| Concatenate multiple PIL images either horizontally or vertically. | |
| Args: | |
| images: List of PIL Images | |
| direction: "horizontal" or "vertical" | |
| Returns: | |
| PIL Image: Concatenated image | |
| """ | |
| if not images: | |
| return None | |
| # Filter out None images | |
| valid_images = [img for img in images if img is not None] | |
| if not valid_images: | |
| return None | |
| if len(valid_images) == 1: | |
| return valid_images[0].convert("RGB") | |
| # Convert all images to RGB | |
| valid_images = [img.convert("RGB") for img in valid_images] | |
| if direction == "horizontal": | |
| # Calculate total width and max height | |
| total_width = sum(img.width for img in valid_images) | |
| max_height = max(img.height for img in valid_images) | |
| # Create new image | |
| concatenated = Image.new('RGB', (total_width, max_height), (255, 255, 255)) | |
| # Paste images | |
| x_offset = 0 | |
| for img in valid_images: | |
| # Center image vertically if heights differ | |
| y_offset = (max_height - img.height) // 2 | |
| concatenated.paste(img, (x_offset, y_offset)) | |
| x_offset += img.width | |
| else: # vertical | |
| # Calculate max width and total height | |
| max_width = max(img.width for img in valid_images) | |
| total_height = sum(img.height for img in valid_images) | |
| # Create new image | |
| concatenated = Image.new('RGB', (max_width, total_height), (255, 255, 255)) | |
| # Paste images | |
| y_offset = 0 | |
| for img in valid_images: | |
| # Center image horizontally if widths differ | |
| x_offset = (max_width - img.width) // 2 | |
| concatenated.paste(img, (x_offset, y_offset)) | |
| y_offset += img.height | |
| return concatenated | |
| def infer(input_images, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, steps=8, width=1024, height=1024, progress=gr.Progress(track_tqdm=True)): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Handle input_images - it could be a single image or a list of images | |
| if input_images is None: | |
| raise gr.Error("Please upload at least one image.") | |
| # If it's a single image (not a list), convert to list | |
| if not isinstance(input_images, list): | |
| input_images = [input_images] | |
| # Filter out None images | |
| valid_images = [img[0] for img in input_images if img is not None] | |
| if not valid_images: | |
| raise gr.Error("Please upload at least one valid image.") | |
| # Concatenate images horizontally | |
| concatenated_image = concatenate_images(valid_images, "horizontal") | |
| if concatenated_image is None: | |
| raise gr.Error("Failed to process the input images.") | |
| # original_width, original_height = concatenated_image.size | |
| # if original_width >= original_height: | |
| # new_width = 1024 | |
| # new_height = int(original_height * (new_width / original_width)) | |
| # new_height = round(new_height / 64) * 64 | |
| # else: | |
| # new_height = 1024 | |
| # new_width = int(original_width * (new_height / original_height)) | |
| # new_width = round(new_width / 64) * 64 | |
| #concatenated_image_resized = concatenated_image.resize((new_width, new_height), Image.LANCZOS) | |
| final_prompt = f"From the provided reference images, create a unified, cohesive image such that {prompt}. Maintain the identity and characteristics of each subject while adjusting their proportions, scale, and positioning to create a harmonious, naturally balanced composition. Blend and integrate all elements seamlessly with consistent lighting, perspective, and style.the final result should look like a single naturally captured scene where all subjects are properly sized and positioned relative to each other, not assembled from multiple sources." | |
| image = pipe( | |
| image=concatenated_image, | |
| prompt=final_prompt, | |
| guidance_scale=guidance_scale, | |
| width=width, | |
| height=height, | |
| max_area=width * height, | |
| num_inference_steps=steps, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| return image, seed, gr.update(visible=True) | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 86vw; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# FLUX.1 Kontext | Lightning 8-Step Model ⚡ | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_images = gr.Gallery( | |
| label="Upload image(s) for editing", | |
| show_label=True, | |
| elem_id="gallery_input", | |
| columns=3, | |
| rows=2, | |
| object_fit="contain", | |
| height="auto", | |
| file_types=['image'], | |
| type='pil' | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| with gr.Accordion("Advanced Settings", open=True): | |
| with gr.Group(): | |
| width = gr.Slider( | |
| label="W", | |
| minimum=512, | |
| maximum=2560, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="H", | |
| minimum=512, | |
| maximum=2560, | |
| step=64, | |
| value=1024, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| ) | |
| input_steps = gr.Slider( | |
| label="Steps", | |
| minimum=1, | |
| maximum=30, | |
| step=1, | |
| value=16, | |
| ) | |
| with gr.Column(): | |
| result = gr.Image(label="Result", show_label=False, interactive=False) | |
| reuse_button = gr.Button("Reuse this image", visible=False) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn = infer, | |
| inputs = [input_images, prompt, seed, randomize_seed, guidance_scale, input_steps, width, height], | |
| outputs = [result, seed, reuse_button] | |
| ) | |
| reuse_button.click( | |
| fn = lambda image: [image] if image is not None else [], # Convert single image to list for gallery | |
| inputs = [result], | |
| outputs = [input_images] | |
| ) | |
| demo.queue().launch() |