LPX55 commited on
Commit
52689dc
·
verified ·
1 Parent(s): 13d6aa5

Create ela_hybrid.py

Browse files
Files changed (1) hide show
  1. forensics/ela_hybrid.py +61 -0
forensics/ela_hybrid.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ela_hybrid.py
2
+ import numpy as np
3
+ import cv2 as cv
4
+ from PIL import Image
5
+ import matplotlib.pyplot as plt
6
+
7
+
8
+ def compress_jpg(image, quality=75):
9
+ """Compress image using JPEG compression (shared from ela.py)."""
10
+ encode_param = [int(cv.IMWRITE_JPEG_QUALITY), quality]
11
+ _, buffer = cv.imencode('.jpg', image, encode_param)
12
+ return cv.imdecode(buffer, cv.IMREAD_COLOR)
13
+
14
+
15
+ def generate_ela_hybrid(image_path: str, quality: int = 95, scale_factor: int = 150):
16
+ """
17
+ Generate a 6-channel hybrid image combining RGB and ELA (3 channels each).
18
+
19
+ Args:
20
+ image_path (str): Path to the input image.
21
+ quality (int): JPEG compression quality (1-100).
22
+ scale_factor (int): Scale factor for ELA contrast.
23
+
24
+ Returns:
25
+ np.ndarray: 6-channel (RGB + ELA) image with shape (H, W, 6), dtype float32, normalized [0,1]
26
+ """
27
+ # Load original image
28
+ original = cv.imread(image_path, cv.IMREAD_COLOR)
29
+ original = original.astype(np.float32) / 255 # Normalize to [0, 1]
30
+
31
+ # Compress and reload image
32
+ compressed = compress_jpg(original, quality)
33
+ compressed = compressed.astype(np.float32) / 255 # Normalize to [0, 1]
34
+
35
+ # Generate ELA as absolute difference between original and compressed
36
+ ela = cv.absdiff(original, compressed)
37
+
38
+ # Apply scale factor to enhance ELA differences
39
+ ela = cv.convertScaleAbs(ela, alpha=scale_factor / 100, beta=0)
40
+ ela = ela.astype(np.float32) / 255 # Normalize back to [0, 1]
41
+
42
+ # Stack RGB and ELA (3 channels each) into 6-channel input
43
+ hybrid_image = np.concatenate([original, ela], axis=-1) # Shape: H×W×6
44
+
45
+ return hybrid_image
46
+
47
+
48
+ def save_hybrid_image(hybrid_array, save_path: str):
49
+ """Save the 6-channel hybrid image as a .npy file for model input."""
50
+ np.save(save_path, hybrid_array)
51
+ print(f"Saved hybrid ELA image to {save_path}")
52
+
53
+
54
+ def visualize_hybrid(hybrid_array: np.ndarray, split_visualize: bool = True):
55
+ """Split the 6 channels into RGB and ELA for visualization."""
56
+ rgb_image = (hybrid_array[:, :, :3] * 255).astype(np.uint8)
57
+ ela_image = (hybrid_array[:, :, 3:] * 255).astype(np.uint8)
58
+ return {
59
+ "rgb": Image.fromarray(rgb_image),
60
+ "ela": Image.fromarray(ela_image),
61
+ }