Spaces:
Runtime error
Runtime error
Create ela_hybrid.py
Browse files- forensics/ela_hybrid.py +61 -0
forensics/ela_hybrid.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ela_hybrid.py
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2 as cv
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def compress_jpg(image, quality=75):
|
| 9 |
+
"""Compress image using JPEG compression (shared from ela.py)."""
|
| 10 |
+
encode_param = [int(cv.IMWRITE_JPEG_QUALITY), quality]
|
| 11 |
+
_, buffer = cv.imencode('.jpg', image, encode_param)
|
| 12 |
+
return cv.imdecode(buffer, cv.IMREAD_COLOR)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def generate_ela_hybrid(image_path: str, quality: int = 95, scale_factor: int = 150):
|
| 16 |
+
"""
|
| 17 |
+
Generate a 6-channel hybrid image combining RGB and ELA (3 channels each).
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
image_path (str): Path to the input image.
|
| 21 |
+
quality (int): JPEG compression quality (1-100).
|
| 22 |
+
scale_factor (int): Scale factor for ELA contrast.
|
| 23 |
+
|
| 24 |
+
Returns:
|
| 25 |
+
np.ndarray: 6-channel (RGB + ELA) image with shape (H, W, 6), dtype float32, normalized [0,1]
|
| 26 |
+
"""
|
| 27 |
+
# Load original image
|
| 28 |
+
original = cv.imread(image_path, cv.IMREAD_COLOR)
|
| 29 |
+
original = original.astype(np.float32) / 255 # Normalize to [0, 1]
|
| 30 |
+
|
| 31 |
+
# Compress and reload image
|
| 32 |
+
compressed = compress_jpg(original, quality)
|
| 33 |
+
compressed = compressed.astype(np.float32) / 255 # Normalize to [0, 1]
|
| 34 |
+
|
| 35 |
+
# Generate ELA as absolute difference between original and compressed
|
| 36 |
+
ela = cv.absdiff(original, compressed)
|
| 37 |
+
|
| 38 |
+
# Apply scale factor to enhance ELA differences
|
| 39 |
+
ela = cv.convertScaleAbs(ela, alpha=scale_factor / 100, beta=0)
|
| 40 |
+
ela = ela.astype(np.float32) / 255 # Normalize back to [0, 1]
|
| 41 |
+
|
| 42 |
+
# Stack RGB and ELA (3 channels each) into 6-channel input
|
| 43 |
+
hybrid_image = np.concatenate([original, ela], axis=-1) # Shape: H×W×6
|
| 44 |
+
|
| 45 |
+
return hybrid_image
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def save_hybrid_image(hybrid_array, save_path: str):
|
| 49 |
+
"""Save the 6-channel hybrid image as a .npy file for model input."""
|
| 50 |
+
np.save(save_path, hybrid_array)
|
| 51 |
+
print(f"Saved hybrid ELA image to {save_path}")
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def visualize_hybrid(hybrid_array: np.ndarray, split_visualize: bool = True):
|
| 55 |
+
"""Split the 6 channels into RGB and ELA for visualization."""
|
| 56 |
+
rgb_image = (hybrid_array[:, :, :3] * 255).astype(np.uint8)
|
| 57 |
+
ela_image = (hybrid_array[:, :, 3:] * 255).astype(np.uint8)
|
| 58 |
+
return {
|
| 59 |
+
"rgb": Image.fromarray(rgb_image),
|
| 60 |
+
"ela": Image.fromarray(ela_image),
|
| 61 |
+
}
|