Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification | |
from torchvision import transforms | |
import torch | |
from PIL import Image | |
import numpy as np | |
from utils.goat import call_inference | |
import io | |
import warnings | |
# Suppress warnings | |
warnings.filterwarnings("ignore", category=UserWarning, message="Using a slow image processor as `use_fast` is unset") | |
# Ensure using GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the first model and processor | |
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True) | |
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
model_1 = model_1.to(device) | |
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) | |
# Load the second model | |
model_2_path = "Heem2/AI-vs-Real-Image-Detection" | |
clf_2 = pipeline("image-classification", model=model_2_path, device=device) | |
# Load additional models | |
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"] | |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device) | |
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device) | |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device) | |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device) | |
# Define class names for all models | |
class_names_1 = ['artificial', 'real'] | |
class_names_2 = ['AI Image', 'Real Image'] | |
labels_3 = ['AI', 'Real'] | |
labels_4 = ['AI', 'Real'] | |
def softmax(vector): | |
e = np.exp(vector - np.max(vector)) # for numerical stability | |
return e / e.sum() | |
def convert_pil_to_bytes(image, format='JPEG'): | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format=format) | |
img_byte_arr = img_byte_arr.getvalue() | |
return img_byte_arr | |
def predict_image(img, confidence_threshold): | |
# Ensure the image is a PIL Image | |
if not isinstance(img, Image.Image): | |
raise ValueError(f"Expected a PIL Image, but got {type(img)}") | |
# Convert the image to RGB if not already | |
if img.mode != 'RGB': | |
img_pil = img.convert('RGB') | |
else: | |
img_pil = img | |
# Resize the image | |
img_pil = transforms.Resize((256, 256))(img_pil) | |
# Predict using the first model | |
try: | |
prediction_1 = clf_1(img_pil) | |
result_1 = {pred['label']: pred['score'] for pred in prediction_1} | |
result_1output = [1, 'SwinV2-base', result_1['real'], result_1['artificial']] | |
print(result_1output) | |
# Ensure the result dictionary contains all class names | |
for class_name in class_names_1: | |
if class_name not in result_1: | |
result_1[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_1['artificial'] >= confidence_threshold: | |
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}" | |
result_1output += ['AI'] | |
elif result_1['real'] >= confidence_threshold: | |
label_1 = f"Real, Confidence: {result_1['real']:.4f}" | |
result_1output += ['REAL'] | |
else: | |
label_1 = "Uncertain Classification" | |
result_1output += ['UNCERTAIN'] | |
except Exception as e: | |
label_1 = f"Error: {str(e)}" | |
print(result_1output) | |
# Predict using the second model | |
try: | |
prediction_2 = clf_2(img_pil) | |
result_2 = {pred['label']: pred['score'] for pred in prediction_2} | |
result_2output = [2, 'ViT-base Classifer', result_2['Real Image'], result_2['AI Image']] | |
print(result_2output) | |
# Ensure the result dictionary contains all class names | |
for class_name in class_names_2: | |
if class_name not in result_2: | |
result_2[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_2['AI Image'] >= confidence_threshold: | |
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}" | |
result_2output += ['AI'] | |
elif result_2['Real Image'] >= confidence_threshold: | |
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}" | |
result_2output += ['REAL'] | |
else: | |
label_2 = "Uncertain Classification" | |
result_2output += ['UNCERTAIN'] | |
except Exception as e: | |
label_2 = f"Error: {str(e)}" | |
# Predict using the third model with softmax | |
try: | |
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs_3 = model_3(**inputs_3) | |
logits_3 = outputs_3.logits | |
probabilities_3 = softmax(logits_3.cpu().numpy()[0]) | |
result_3 = { | |
labels_3[1]: float(probabilities_3[1]), # Real | |
labels_3[0]: float(probabilities_3[0]) # AI | |
} | |
result_3output = [3, 'SDXL-Trained', float(probabilities_3[1]), float(probabilities_3[0])] | |
print(result_3output) | |
# Ensure the result dictionary contains all class names | |
for class_name in labels_3: | |
if class_name not in result_3: | |
result_3[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_3['AI'] >= confidence_threshold: | |
label_3 = f"AI, Confidence: {result_3['AI']:.4f}" | |
result_3output += ['AI'] | |
elif result_3['Real'] >= confidence_threshold: | |
label_3 = f"Real, Confidence: {result_3['Real']:.4f}" | |
result_3output += ['REAL'] | |
else: | |
label_3 = "Uncertain Classification" | |
result_3output += ['UNCERTAIN'] | |
except Exception as e: | |
label_3 = f"Error: {str(e)}" | |
# Predict using the fourth model with softmax | |
try: | |
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs_4 = model_4(**inputs_4) | |
logits_4 = outputs_4.logits | |
probabilities_4 = softmax(logits_4.cpu().numpy()[0]) | |
result_4 = { | |
labels_4[1]: float(probabilities_4[1]), # Real | |
labels_4[0]: float(probabilities_4[0]) # AI | |
} | |
result_4output = [4, 'SDXL + FLUX', float(probabilities_4[1]), float(probabilities_4[0])] | |
print(result_4) | |
# Ensure the result dictionary contains all class names | |
for class_name in labels_4: | |
if class_name not in result_4: | |
result_4[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_4['AI'] >= confidence_threshold: | |
label_4 = f"AI, Confidence: {result_4['AI']:.4f}" | |
result_4output += ['AI'] | |
elif result_4['Real'] >= confidence_threshold: | |
label_4 = f"Real, Confidence: {result_4['Real']:.4f}" | |
result_4output += ['REAL'] | |
else: | |
label_4 = "Uncertain Classification" | |
result_4output += ['UNCERTAIN'] | |
except Exception as e: | |
label_4 = f"Error: {str(e)}" | |
try: | |
result_5output = [5, 'TBA', 0.0, 0.0, 'MAINTENANCE'] | |
img_bytes = convert_pil_to_bytes(img_pil) | |
# print(img) | |
# print(img_bytes) | |
response5_raw = call_inference(img) | |
print(response5_raw) | |
response5 = response5_raw | |
print(response5) | |
label_5 = f"Result: {response5}" | |
except Exception as e: | |
label_5 = f"Error: {str(e)}" | |
# Combine results | |
combined_results = { | |
"SwinV2/detect": label_1, | |
"ViT/AI-vs-Real": label_2, | |
"Swin/SDXL": label_3, | |
"Swin/SDXL-FLUX": label_4, | |
"GOAT": label_5 | |
} | |
combined_outputs = [ result_1output, result_2output, result_3output, result_4output, result_5output ] | |
return img_pil, combined_outputs | |
# Define a function to generate the HTML content | |
# Define a function to generate the HTML content | |
def generate_results_html(results): | |
def get_header_color(label): | |
if label == 'AI': | |
return 'bg-red-500 text-red-700 bg-red-100', 'bg-red-400', 'bg-red-100', 'bg-red-700 text-red-700', 'bg-red-200' | |
elif label == 'REAL': | |
return 'bg-green-500 text-green-700 bg-green-100', 'bg-green-400', 'bg-green-100', 'bg-green-700 text-green-700', 'bg-green-200' | |
elif label == 'UNCERTAIN': | |
return 'bg-yellow-500 text-yellow-700 bg-yellow-100', 'bg-yellow-400', 'bg-yellow-100', 'bg-yellow-700 text-yellow-700', 'bg-yellow-200' | |
elif label == 'MAINTENANCE': | |
return 'bg-blue-500 text-blue-700 bg-blue-100', 'bg-blue-400', 'bg-blue-100', 'bg-blue-700 text-blue-700', 'bg-blue-200' | |
else: | |
return 'bg-gray-300 text-gray-700 bg-gray-100', 'bg-gray-400', 'bg-gray-100', 'bg-gray-700 text-gray-700', 'bg-gray-200' | |
html_content = f""" | |
<link href="https://unpkg.com/[email protected]/dist/tailwind.min.css" rel="stylesheet"> | |
<div class="container mx-auto mt-4"> | |
<div class="grid xl:grid-cols-5 md:grid-cols-5 grid-cols-1 gap-1"> | |
<!-- Tile 1: SwinV2/detect --> | |
<div | |
class="group flex flex-col bg-gray-300 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25"> | |
<div | |
class="-m-4 h-24 {get_header_color(results[0][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[0][-1])[4]}"> | |
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 1: {results[0][1]}</span> | |
<span | |
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[0][-1])[2]} px-2.5 py-0.5 {get_header_color(results[0][-1])[3]}" | |
> | |
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="size-5 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse"> | |
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[0][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'} | |
</svg> | |
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[0][-1]}</p> | |
</span> | |
</div> | |
<div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-green-400 h-full rounded-none" style="width: {results[0][2] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[0][2]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-red-400 h-full rounded-none" style="width: {results[0][3] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[0][3]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="flex flex-col items-start"> | |
<h4 class="mt-4 text-sm font-semibold tracking-wide">SwinV2 Based</h4> | |
<hr class="py-px my-2 w-full bg-gray-700" /> | |
<div class="text-xs font-mono">Real: {results[0][2]:.4f}, AI: {results[0][3]:.4f}</div> | |
<hr class="py-px mt-6 w-full bg-gray-700" /> | |
<a class="mt-2 text-[0.66rem] tracking-wide">@haywoodsloan / more info</a> | |
</div> | |
</div> | |
<!-- Tile 2: ViT/AI-vs-Real --> | |
<div | |
class="group flex flex-col bg-gray-300 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25"> | |
<div | |
class="-m-4 h-24 {get_header_color(results[1][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[1][-1])[4]}"> | |
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 2: {results[1][1]}</span> | |
<span | |
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[1][-1])[2]} px-2.5 py-0.5 {get_header_color(results[1][-1])[3]}" | |
> | |
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="size-5 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse"> | |
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[1][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'} | |
</svg> | |
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[1][-1]}</p> | |
</span> | |
</div> | |
<div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-green-400 h-full rounded-none" style="width: {results[1][2] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[1][2]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-red-400 h-full rounded-none" style="width: {results[1][3] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[1][3]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="flex flex-col items-start"> | |
<h4 class="mt-4 text-sm font-semibold tracking-wide">ViT Based</h4> | |
<hr class="py-px my-2 w-full bg-gray-700" /> | |
<div class="text-xs font-mono">Real: {results[1][2]:.4f}, AI: {results[1][3]:.4f}</div> | |
<hr class="py-px mt-6 w-full bg-gray-700" /> | |
<a class="mt-2 text-[0.66rem] tracking-wide">@Heem2 / more info</a> | |
</div> | |
</div> | |
<!-- Tile 3: Swin/SDXL --> | |
<div | |
class="group flex flex-col bg-gray-300 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25"> | |
<div | |
class="-m-4 h-24 {get_header_color(results[2][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[2][-1])[4]}"> | |
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 3: {results[2][1]}</span> | |
<span | |
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[2][-1])[2]} px-2.5 py-0.5 {get_header_color(results[2][-1])[3]}" | |
> | |
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="size-5 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse"> | |
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[2][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'} | |
</svg> | |
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[2][-1]}</p> | |
</span> | |
</div> | |
<div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-green-400 h-full rounded-none" style="width: {results[2][2] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[2][2]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-red-400 h-full rounded-none" style="width: {results[2][3] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[2][3]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="flex flex-col items-start"> | |
<h4 class="mt-4 text-sm font-semibold tracking-wide">Swin Based</h4> | |
<hr class="py-px my-2 w-full bg-gray-700" /> | |
<div class="text-xs font-mono">Real: {results[2][2]:.4f}, AI: {results[2][3]:.4f}</div> | |
<hr class="py-px mt-6 w-full bg-gray-700" /> | |
<a class="mt-2 text-[0.66rem] tracking-wide">@Organika / more info</a> | |
</div> | |
</div> | |
<!-- Tile 4: Swin/SDXL-FLUX --> | |
<div | |
class="group flex flex-col bg-gray-300 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25"> | |
<div | |
class="-m-4 h-24 {get_header_color(results[3][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[3][-1])[4]}"> | |
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 4: {results[3][1]}</span> | |
<span | |
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[3][-1])[2]} px-2.5 py-0.5 {get_header_color(results[3][-1])[3]}" | |
> | |
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="size-5 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse"> | |
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[3][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'} | |
</svg> | |
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[3][-1]}</p> | |
</span> | |
</div> | |
<div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-green-400 h-full rounded-none" style="width: {results[3][2] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[3][2]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-red-400 h-full rounded-none" style="width: {results[3][3] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[3][3]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="flex flex-col items-start"> | |
<h4 class="mt-4 text-sm font-semibold tracking-wide">Swin Based</h4> | |
<hr class="py-px my-2 w-full bg-gray-700" /> | |
<div class="text-xs font-mono">Real: {results[3][2]:.4f}, AI: {results[3][3]:.4f}</div> | |
<hr class="py-px mt-6 w-full bg-gray-700" /> | |
<a class="mt-2 text-[0.66rem] tracking-wide">@cmckinle / more info</a> | |
</div> | |
</div> | |
<!-- Tile 5: GOAT --> | |
<div | |
class="group flex flex-col bg-gray-300 rounded-sm p-4 m-1 border border-gray-800 shadow-xs transition hover:shadow-lg dark:shadow-gray-700/25"> | |
<div | |
class="-m-4 h-24 {get_header_color(results[4][-1])[0]} rounded-sm rounded-b-none transition border group-hover:border-gray-100 group-hover:shadow-lg group-hover:{get_header_color(results[4][-1])[4]}"> | |
<span class="text-gray-300 font-mono tracking-widest p-4 pb-3 block text-xs text-center">MODEL 5: {results[4][1]}</span> | |
<span | |
class="flex w-24 mx-auto tracking-wide items-center justify-center rounded-full {get_header_color(results[4][-1])[2]} px-2.5 py-0.5 {get_header_color(results[4][-1])[3]}" | |
> | |
<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width="3" stroke="currentColor" class="size-5 mr-2 -ml-3 group-hover:animate group-hover:animate-pulse"> | |
{'<path stroke-linecap="round" stroke-linejoin="round" d="M9 12.75 11.25 15 15 9.75M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />' if results[4][-1] == 'REAL' else '<path stroke-linecap="round" stroke-linejoin="round" d="m9.75 9.75 4.5 4.5m0-4.5-4.5 4.5M21 12a9 9 0 1 1-18 0 9 9 0 0 1 18 0Z" />'} | |
</svg> | |
<p class="whitespace-nowrap text-lg leading-normal font-bold text-center self-center align-middle py-px">{results[4][-1]}</p> | |
</span> | |
</div> | |
<div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-green-400 h-full rounded-none" style="width: {results[4][2] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[4][2]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
<div class="mt-4 relative -mx-4 bg-gray-800"> | |
<div class="w-full bg-gray-400 rounded-none h-8"> | |
<div class="bg-red-400 h-full rounded-none" style="width: {results[4][3] * 100:.2f}%;"> | |
<p class="p-2 px-4 text-xs self-center align-middle">Conf: | |
<span class="ml-1 font-medium font-mono">{results[4][3]:.4f}</span> | |
</p> | |
</div> | |
</div> | |
</div> | |
</div> | |
<div class="flex flex-col items-start"> | |
<h4 class="mt-4 text-sm font-semibold tracking-wide">GOAT Model</h4> | |
<hr class="py-px my-2 w-full bg-gray-700" /> | |
<div class="text-xs font-mono">Real: {results[4][2]:.4f}, AI: {results[4][3]:.4f}</div> | |
<hr class="py-px mt-6 w-full bg-gray-700" /> | |
<a class="mt-2 text-[0.66rem] tracking-wide">@GOAT / more info</a> | |
</div> | |
</div> | |
</div> | |
</div> | |
""" | |
return html_content | |
# Modify the predict_image function to return the HTML content | |
def predict_image_with_html(img, confidence_threshold): | |
img_pil, results = predict_image(img, confidence_threshold) | |
html_content = generate_results_html(results) | |
return img_pil, html_content | |
# Define the Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown("# AI Generated Image Classification") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil') | |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") | |
inputs = [image_input, confidence_slider] | |
with gr.Column(scale=2): | |
image_output = gr.Image(label="Processed Image") | |
# Custom HTML component to display results in 5 columns | |
results_html = gr.HTML(label="Model Predictions") | |
outputs = [image_output, results_html] | |
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs) | |
# Launch the interface | |
iface.launch() |