Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, AutoFeatureExtractor, AutoModelForImageClassification | |
from torchvision import transforms | |
import torch | |
from PIL import Image | |
import numpy as np | |
from utils.goat import call_inference | |
import io | |
# Ensure using GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# Load the first model and processor | |
image_processor_1 = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy", use_fast=True) | |
model_1 = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
model_1 = model_1.to(device) | |
clf_1 = pipeline(model=model_1, task="image-classification", image_processor=image_processor_1, device=device) | |
# Load the second model | |
model_2_path = "Heem2/AI-vs-Real-Image-Detection" | |
clf_2 = pipeline("image-classification", model=model_2_path, device=device) | |
# Load additional models | |
models = ["Organika/sdxl-detector", "cmckinle/sdxl-flux-detector"] | |
feature_extractor_3 = AutoFeatureExtractor.from_pretrained(models[0], device=device) | |
model_3 = AutoModelForImageClassification.from_pretrained(models[0]).to(device) | |
feature_extractor_4 = AutoFeatureExtractor.from_pretrained(models[1], device=device) | |
model_4 = AutoModelForImageClassification.from_pretrained(models[1]).to(device) | |
# Define class names for all models | |
class_names_1 = ['artificial', 'real'] | |
class_names_2 = ['AI Image', 'Real Image'] | |
labels_3 = ['AI', 'Real'] | |
labels_4 = ['AI', 'Real'] | |
def softmax(vector): | |
e = np.exp(vector - np.max(vector)) # for numerical stability | |
return e / e.sum() | |
def convert_pil_to_bytes(image, format='JPEG'): | |
img_byte_arr = io.BytesIO() | |
image.save(img_byte_arr, format=format) | |
img_byte_arr = img_byte_arr.getvalue() | |
return img_byte_arr | |
def predict_image(img, confidence_threshold): | |
# Ensure the image is a PIL Image | |
if not isinstance(img, Image.Image): | |
raise ValueError(f"Expected a PIL Image, but got {type(img)}") | |
# Convert the image to RGB if not already | |
if img.mode != 'RGB': | |
img_pil = img.convert('RGB') | |
else: | |
img_pil = img | |
# Resize the image | |
img_pil = transforms.Resize((256, 256))(img_pil) | |
# Predict using the first model | |
try: | |
prediction_1 = clf_1(img_pil) | |
result_1 = {pred['label']: pred['score'] for pred in prediction_1} | |
print(result_1) | |
# Ensure the result dictionary contains all class names | |
for class_name in class_names_1: | |
if class_name not in result_1: | |
result_1[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_1['artificial'] >= confidence_threshold: | |
label_1 = f"AI, Confidence: {result_1['artificial']:.4f}" | |
elif result_1['real'] >= confidence_threshold: | |
label_1 = f"Real, Confidence: {result_1['real']:.4f}" | |
else: | |
label_1 = "Uncertain Classification" | |
except Exception as e: | |
label_1 = f"Error: {str(e)}" | |
# Predict using the second model | |
try: | |
prediction_2 = clf_2(img_pil) | |
result_2 = {pred['label']: pred['score'] for pred in prediction_2} | |
print(result_2) | |
# Ensure the result dictionary contains all class names | |
for class_name in class_names_2: | |
if class_name not in result_2: | |
result_2[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_2['AI Image'] >= confidence_threshold: | |
label_2 = f"AI, Confidence: {result_2['AI Image']:.4f}" | |
elif result_2['Real Image'] >= confidence_threshold: | |
label_2 = f"Real, Confidence: {result_2['Real Image']:.4f}" | |
else: | |
label_2 = "Uncertain Classification" | |
except Exception as e: | |
label_2 = f"Error: {str(e)}" | |
# Predict using the third model with softmax | |
try: | |
inputs_3 = feature_extractor_3(img_pil, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs_3 = model_3(**inputs_3) | |
logits_3 = outputs_3.logits | |
probabilities_3 = softmax(logits_3.cpu().numpy()[0]) | |
result_3 = { | |
labels_3[0]: float(probabilities_3[0]), # AI | |
labels_3[1]: float(probabilities_3[1]) # Real | |
} | |
print(result_3) | |
# Ensure the result dictionary contains all class names | |
for class_name in labels_3: | |
if class_name not in result_3: | |
result_3[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_3['AI'] >= confidence_threshold: | |
label_3 = f"AI, Confidence: {result_3['AI']:.4f}" | |
elif result_3['Real'] >= confidence_threshold: | |
label_3 = f"Real, Confidence: {result_3['Real']:.4f}" | |
else: | |
label_3 = "Uncertain Classification" | |
except Exception as e: | |
label_3 = f"Error: {str(e)}" | |
# Predict using the fourth model with softmax | |
try: | |
inputs_4 = feature_extractor_4(img_pil, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs_4 = model_4(**inputs_4) | |
logits_4 = outputs_4.logits | |
probabilities_4 = softmax(logits_4.cpu().numpy()[0]) | |
result_4 = { | |
labels_4[0]: float(probabilities_4[0]), # AI | |
labels_4[1]: float(probabilities_4[1]) # Real | |
} | |
print(result_4) | |
# Ensure the result dictionary contains all class names | |
for class_name in labels_4: | |
if class_name not in result_4: | |
result_4[class_name] = 0.0 | |
# Check if either class meets the confidence threshold | |
if result_4['AI'] >= confidence_threshold: | |
label_4 = f"AI, Confidence: {result_4['AI']:.4f}" | |
elif result_4['Real'] >= confidence_threshold: | |
label_4 = f"Real, Confidence: {result_4['Real']:.4f}" | |
else: | |
label_4 = "Uncertain Classification" | |
except Exception as e: | |
label_4 = f"Error: {str(e)}" | |
try: | |
img_bytes = convert_pil_to_bytes(img_pil) | |
response5_raw = call_inference(img_bytes) | |
response5 = response5_raw.json() | |
print(response5) | |
label_5 = f"Result: {response5}" | |
except Exception as e: | |
label_5 = f"Error: {str(e)}" | |
# Combine results | |
combined_results = { | |
"SwinV2/detect": label_1, | |
"ViT/AI-vs-Real": label_2, | |
"Swin/SDXL": label_3, | |
"Swin/SDXL-FLUX": label_4, | |
"GOAT": label_5 | |
} | |
return img_pil, combined_results | |
# Define the Gradio interface | |
with gr.Blocks() as iface: | |
gr.Markdown("# AI Generated Image Classification") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Upload Image to Analyze", sources=['upload'], type='pil') | |
confidence_slider = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Confidence Threshold") | |
inputs = [image_input, confidence_slider] | |
with gr.Column(): | |
image_output = gr.Image(label="Processed Image") | |
# Custom HTML component to display results in 5 columns | |
results_html = gr.HTML(label="Model Predictions") | |
outputs = [image_output, results_html] | |
gr.Button("Predict").click(fn=predict_image_with_html, inputs=inputs, outputs=outputs) | |
# Define a function to generate the HTML content | |
def generate_results_html(results): | |
html_content = f""" | |
<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css" rel="stylesheet"> | |
<div class="container"> | |
<div class="row mt-4"> | |
<div class="col"> | |
<h5>SwinV2/detect</h5> | |
<p>{results.get("SwinV2/detect", "N/A")}</p> | |
</div> | |
<div class="col"> | |
<h5>ViT/AI-vs-Real</h5> | |
<p>{results.get("ViT/AI-vs-Real", "N/A")}</p> | |
</div> | |
<div class="col"> | |
<h5>Swin/SDXL</h5> | |
<p>{results.get("Swin/SDXL", "N/A")}</p> | |
</div> | |
<div class="col"> | |
<h5>Swin/SDXL-FLUX</h5> | |
<p>{results.get("Swin/SDXL-FLUX", "N/A")}</p> | |
</div> | |
<div class="col"> | |
<h5>GOAT</h5> | |
<p>{results.get("GOAT", "N/A")}</p> | |
</div> | |
</div> | |
</div> | |
""" | |
return html_content | |
# Modify the predict_image function to return the HTML content | |
def predict_image_with_html(img, confidence_threshold): | |
img_pil, results = predict_image(img, confidence_threshold) | |
html_content = generate_results_html(results) | |
return img_pil, html_content | |
# Launch the interface | |
iface.launch() |