Spaces:
Runtime error
Runtime error
import gradio as gr | |
# from transformers import AutoBackbone, AutoModelForImageClassification, AutoImageProcessor, Swinv2ForImageClassification | |
from transformers import pipeline, AutoImageProcessor, Swinv2ForImageClassification, Swinv2Model | |
from torchvision import transforms | |
# model = AutoModelForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
# image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
image_processor = AutoImageProcessor.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
# image_processor = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
model = Swinv2ForImageClassification.from_pretrained("haywoodsloan/ai-image-detector-deploy") | |
clf = pipeline(model=model, task="image-classification", image_processor=image_processor) | |
class_names = ['artificial', 'real'] | |
def predict_image(img): | |
img = transforms.ToPILImage()(img) | |
img = transforms.Resize((256,256))(img) | |
prediction=clf.predict(img) | |
return {class_names[i]: float(prediction[i]["score"]) for i in range(2)} | |
image = gr.Image(label="Image to Analyze", sources=['upload']) | |
label = gr.Label(num_top_classes=2) | |
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="AI Generated Classification").launch() |