Spaces:
Build error
Build error
Upload folder using huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled18.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1_vTVH3hBX8wVXIgrW1T2Q4N1DSkWoXV8
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
from transformers import TextStreamer
|
15 |
+
from unsloth import FastLanguageModel
|
16 |
+
from google.colab import drive
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Ensure necessary packages are installed
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# Define the parameters for the model
|
24 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
25 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
26 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
27 |
+
|
28 |
+
# Load the model and tokenizer
|
29 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
30 |
+
model_name="lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
31 |
+
max_seq_length=max_seq_length,
|
32 |
+
dtype=dtype,
|
33 |
+
load_in_4bit=load_in_4bit,
|
34 |
+
)
|
35 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
36 |
+
|
37 |
+
# Define the Alpaca prompt
|
38 |
+
alpaca_prompt = """
|
39 |
+
### Input:
|
40 |
+
{}
|
41 |
+
|
42 |
+
### Response:
|
43 |
+
{}"""
|
44 |
+
|
45 |
+
# Define the function to generate responses
|
46 |
+
def chat_alpaca(message: str, history: list, temperature: float, max_new_tokens: int) -> str:
|
47 |
+
prompt = alpaca_prompt.format(message, "")
|
48 |
+
inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
|
49 |
+
|
50 |
+
# Define the streamer
|
51 |
+
text_streamer = TextStreamer(tokenizer)
|
52 |
+
|
53 |
+
# Generate the response
|
54 |
+
outputs = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_new_tokens, temperature=temperature)
|
55 |
+
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
|
56 |
+
|
57 |
+
# Return the response
|
58 |
+
return response
|
59 |
+
|
60 |
+
# Define the response function for the Gradio interface
|
61 |
+
def respond(message, history, system_message, max_new_tokens, temperature, top_p):
|
62 |
+
return chat_alpaca(message, history, temperature, max_new_tokens)
|
63 |
+
|
64 |
+
# Create the Gradio interface
|
65 |
+
demo = gr.ChatInterface(
|
66 |
+
respond,
|
67 |
+
additional_inputs=[
|
68 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
69 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
70 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
71 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
72 |
+
],
|
73 |
+
)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
demo.launch(share=True)
|
77 |
+
|