Spaces:
Running
Running
# Copyright 2019 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Base augmentations operators.""" | |
import numpy as np | |
from PIL import Image, ImageOps, ImageEnhance | |
# ImageNet code should change this value | |
IMAGE_SIZE = 28 | |
def int_parameter(level, maxval): | |
"""Helper function to scale `val` between 0 and maxval . | |
Args: | |
level: Level of the operation that will be between [0, `PARAMETER_MAX`]. | |
maxval: Maximum value that the operation can have. This will be scaled to | |
level/PARAMETER_MAX. | |
Returns: | |
An int that results from scaling `maxval` according to `level`. | |
""" | |
return int(level * maxval / 10) | |
def float_parameter(level, maxval): | |
"""Helper function to scale `val` between 0 and maxval. | |
Args: | |
level: Level of the operation that will be between [0, `PARAMETER_MAX`]. | |
maxval: Maximum value that the operation can have. This will be scaled to | |
level/PARAMETER_MAX. | |
Returns: | |
A float that results from scaling `maxval` according to `level`. | |
""" | |
return float(level) * maxval / 10. | |
def sample_level(n): | |
return np.random.uniform(low=0.1, high=n) | |
def autocontrast(pil_img, _): | |
return ImageOps.autocontrast(pil_img) | |
def equalize(pil_img, _): | |
return ImageOps.equalize(pil_img) | |
def posterize(pil_img, level): | |
level = int_parameter(sample_level(level), 4) | |
return ImageOps.posterize(pil_img, 4 - level) | |
def rotate(pil_img, level): | |
degrees = int_parameter(sample_level(level), 30) | |
if np.random.uniform() > 0.5: | |
degrees = -degrees | |
return pil_img.rotate(degrees, resample=Image.BILINEAR) | |
def solarize(pil_img, level): | |
level = int_parameter(sample_level(level), 256) | |
return ImageOps.solarize(pil_img, 256 - level) | |
def shear_x(pil_img, level): | |
level = float_parameter(sample_level(level), 0.3) | |
if np.random.uniform() > 0.5: | |
level = -level | |
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
Image.AFFINE, (1, level, 0, 0, 1, 0), | |
resample=Image.BILINEAR) | |
def shear_y(pil_img, level): | |
level = float_parameter(sample_level(level), 0.3) | |
if np.random.uniform() > 0.5: | |
level = -level | |
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
Image.AFFINE, (1, 0, 0, level, 1, 0), | |
resample=Image.BILINEAR) | |
def translate_x(pil_img, level): | |
level = int_parameter(sample_level(level), IMAGE_SIZE / 3) | |
if np.random.random() > 0.5: | |
level = -level | |
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
Image.AFFINE, (1, 0, level, 0, 1, 0), | |
resample=Image.BILINEAR) | |
def translate_y(pil_img, level): | |
level = int_parameter(sample_level(level), IMAGE_SIZE / 3) | |
if np.random.random() > 0.5: | |
level = -level | |
return pil_img.transform((IMAGE_SIZE, IMAGE_SIZE), | |
Image.AFFINE, (1, 0, 0, 0, 1, level), | |
resample=Image.BILINEAR) | |
# operation that overlaps with ImageNet-C's test set | |
def color(pil_img, level): | |
level = float_parameter(sample_level(level), 1.8) + 0.1 | |
return ImageEnhance.Color(pil_img).enhance(level) | |
# operation that overlaps with ImageNet-C's test set | |
def contrast(pil_img, level): | |
level = float_parameter(sample_level(level), 1.8) + 0.1 | |
return ImageEnhance.Contrast(pil_img).enhance(level) | |
# operation that overlaps with ImageNet-C's test set | |
def brightness(pil_img, level): | |
level = float_parameter(sample_level(level), 1.8) + 0.1 | |
return ImageEnhance.Brightness(pil_img).enhance(level) | |
# operation that overlaps with ImageNet-C's test set | |
def sharpness(pil_img, level): | |
level = float_parameter(sample_level(level), 1.8) + 0.1 | |
return ImageEnhance.Sharpness(pil_img).enhance(level) | |
augmentations = [ | |
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, | |
translate_x, translate_y | |
] | |
augmentations_all = [ | |
autocontrast, equalize, posterize, rotate, solarize, shear_x, shear_y, | |
translate_x, translate_y, color, contrast, brightness, sharpness | |
] |