Spaces:
Running
Running
import torch | |
from new_impl.cv.elasticdnn.api.algs.fm_lora_glip import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from glip import FMLoRA_GLIP_Util, ElasticDNN_OfflineMMDetFMModel | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.dl.common.model import LayerActivation, get_module | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
import torch.nn.functional as F | |
from maskrcnn_benchmark.structures.bounding_box import BoxList | |
import os | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
class ElasticDNN_GLIP_OfflineMMDetFMModel(ElasticDNN_OfflineMMDetFMModel): | |
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
raise NotImplementedError | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'visual_projection'), True, self.device), 'output' | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
raise NotImplementedError | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
# x: clip-preprocessed images and texts, y: label indexes | |
x['for_training'] = True | |
# for k, v in x.items(): | |
# if isinstance(v, torch.Tensor): | |
# print(k, v.size()) | |
# elif isinstance(v, (list, tuple)): | |
# print(k, len(v)) | |
# else: | |
# print(k, v) | |
loss_dict = self.infer(x) | |
losses = sum(loss for loss in loss_dict.values()) | |
# print(losses) | |
return losses | |
def get_lora_util(self) -> FMLoRA_Util: | |
return FMLoRA_GLIP_Util() | |
def get_task_head_params(self): | |
return [] | |
# class ElasticDNN_CLIP_OfflineMMClsMDModel(ElasticDNN_OfflineMMClsMDModel): | |
# def get_feature_hook(self) -> LayerActivation: | |
# return LayerActivation(get_module(self.models_dict['main'], 'visual_projection'), True, self.device), 'output' | |
# def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
# x['for_training'] = True | |
# output = self.infer(x) | |
# return output.loss | |
if __name__ == '__main__': | |
# 1. init scenario | |
scenario = build_scenario( | |
source_datasets_name=['MM-COCO2017'], | |
target_datasets_order=['MM-CityscapesDet'], | |
da_mode='close_set', | |
data_dirs={ | |
'MM-COCO2017': '/data/zql/datasets/coco2017', | |
'MM-CityscapesDet': '/data/zql/datasets/cityscape' | |
}, | |
) | |
cfg_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_Swin_T_O365_GoldG.yaml' | |
model_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_tiny_model_o365_goldg_cc_sbu.pth' | |
# 2. init model | |
from glip import glip_model, build_transform, run_ner, collect_mm_fn | |
config, gmodel = glip_model(cfg_path, model_path) | |
transform = build_transform(config, None) | |
fm_models_dict_path = save_models_dict_for_init({ | |
'main': gmodel | |
}, __file__, 'fm_glip_pretrained') | |
device = 'cuda' | |
# total_class_to_idx_map = {} | |
# for v in scenario.all_datasets_e2e_class_to_idx_map.values(): | |
# for k, v2 in v.items(): | |
# if k in total_class_to_idx_map.keys(): | |
# assert total_class_to_idx_map[k] == v2 | |
# total_class_to_idx_map[k] = v2 | |
fm_model = ElasticDNN_GLIP_OfflineMMDetFMModel('fm', fm_models_dict_path, device, collate_fn=collect_mm_fn) | |
# 3. init alg | |
models = { | |
'fm': fm_model | |
} | |
import sys | |
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, tag="results")) | |
from PIL import Image, ImageDraw | |
import requests | |
import numpy as np | |
from evaluator import MMCOCODecoder | |
ori_image = Image.open('new_impl/cv/glip/object_detection/000000103759.jpg').convert("RGB") | |
image = transform(np.asarray(ori_image)[:, :, [2, 1, 0]]) | |
text = 'orange. umbrella. ' | |
targets = BoxList(torch.FloatTensor([[0., 0., 0., 0.]]), image_size=image.size()[1:], mode='xyxy') | |
targets.add_field('caption', text) | |
targets.add_field('tokens_positive', run_ner(text)) | |
targets.add_field('labels', torch.LongTensor([0])) | |
samples = {'images' : [image], 'targets' : [targets]} | |
# 4. run alg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
fm_lora_alg.run(scenario, hyps={ | |
'launch_tbboard': False, | |
'transform' : transform, | |
'samples_size': samples, | |
'ab_r': 8, | |
'train_batch_size': 16, | |
'val_batch_size': 1, | |
'num_workers': 16, | |
'optimizer': 'Adam', | |
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, | |
'scheduler': 'LambdaLR', | |
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, | |
'num_iters': 6500, | |
'val_freq': 100 | |
}, collate_fn=collect_mm_fn) |