Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from glip import ElasticGLIPUtil, FMLoRA_GLIP_Util, FM_to_MD_GLIP_Util, ElasticDNN_OfflineMMDetFMModel, ElasticDNN_OfflineMMDetMDModel | |
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
from methods.elasticdnn.model.vit import ElasticViTUtil | |
from methods.elasticdnn.api.algs.md_pretraining_index_v2_train_index_and_md import ElasticDNN_MDPretrainingIndexAlg | |
from utils.dl.common.model import LayerActivation3, get_module, get_parameter | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_scenario | |
import torch.nn.functional as F | |
from maskrcnn_benchmark.structures.bounding_box import BoxList | |
import os | |
from utils.dl.common.loss import CrossEntropyLossSoft | |
from new_impl.cv.feat_align.main_glip import OnlineFeatAlignModel, FeatAlignAlg | |
import tqdm | |
from new_impl.cv.feat_align.mmd import mmd_rbf | |
from new_impl.cv.utils.baseline_da import baseline_da | |
from new_impl.cv.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel | |
os.environ['TOKENIZERS_PARALLELISM'] = 'true' | |
torch.cuda.set_device(0) | |
device = 'cuda' | |
app_name = 'cls' | |
scenario = build_scenario( | |
source_datasets_name=['MM-COCO2017'], | |
target_datasets_order=['MM-CityscapesDet', 'MM-GTA5Det'] * 10, | |
da_mode='close_set', | |
data_dirs={ | |
'MM-COCO2017': '/data/zql/datasets/coco2017', | |
'MM-CityscapesDet': '/data/zql/datasets/cityscape', | |
'MM-GTA5Det': '/data/zql/datasets/GTA-ls-copy/GTA5', | |
}, | |
) | |
class DetOnlineFeatAlignModel(OnlineFeatAlignModel): | |
def get_trained_params(self): # TODO: elastic fm only train a part of params | |
#qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'attention.attention.projection_query' in n or 'attention.attention.projection_key' in n or 'attention.attention.projection_value' in n or 'intermediate.dense' in n or 'output.dense' in n] | |
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters()] | |
return qkv_and_norm_params | |
def get_feature_hook(self): | |
return LayerActivation3(get_module(self.models_dict['main'], 'model.rpn'), False, self.device) | |
def forward_to_get_task_loss(self, x, y): | |
loss_dict = self.infer(x) | |
losses = sum(loss for loss in loss_dict.values()) | |
# print(losses) | |
return losses | |
def get_mmd_loss(self, f1, f2): | |
# f1 = f1.view(f1.shape[0], -1) | |
# f2 = f2.view(f2.shape[0], -1) | |
return mmd_rbf(f1, f2) | |
def infer(self, x, *args, **kwargs): | |
return self.models_dict['main'](**x) | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
# print('DeeplabV3: start test acc') | |
_d = test_loader.dataset | |
imgsz = _d.cocods.img_size | |
cls_num = len(_d.cocods.class_ids) | |
# num_classes = len(_d.cls_names) | |
from data import build_dataloader | |
if _d.__class__.__name__ == 'MergedDataset': | |
# print('\neval on merged datasets') | |
datasets = _d.datasets | |
if self.collate_fn is None: | |
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=None) for d in datasets] | |
else: | |
test_loaders = [build_dataloader(d, test_loader.batch_size, test_loader.num_workers, False, None, collate_fn=self.collate_fn) for d in datasets] | |
accs = [self.get_accuracy(loader) for loader in test_loaders] | |
# print(accs) | |
return sum(accs) / len(accs) | |
# print('dataset len', len(test_loader.dataset)) | |
model = self.models_dict['main'] | |
device = self.device | |
model.eval() | |
# print('# classes', model.num_classes) | |
model = model.to(device) | |
from evaluator import COCOEvaluator, MMCOCODecoder | |
from utils.common.others import HiddenPrints | |
with torch.no_grad(): | |
with HiddenPrints(): | |
evaluator = COCOEvaluator( | |
dataloader=test_loader, | |
img_size=imgsz, | |
confthre=0.01, | |
nmsthre=0.65, | |
num_classes=cls_num, | |
testdev=False | |
) | |
res = evaluator.evaluate(model, False, False, decoder=MMCOCODecoder) | |
map50 = res[1] | |
# print('eval info', res[-1]) | |
return map50 | |
from glip import glip_model, build_transform, run_ner, collect_mm_fn | |
cfg_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_Swin_T_O365_GoldG.yaml' | |
model_path = 'new_impl/cv/glip/object_detection/pretrained_model/glip_tiny_model_o365_goldg_cc_sbu.pth' | |
config, _ = glip_model(cfg_path, model_path) | |
transform = build_transform(config, None) | |
da_alg = FeatAlignAlg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
#from new_impl.cv.model import ClsOnlineFeatAlignModel | |
da_model = DetOnlineFeatAlignModel( | |
app_name, | |
'new_impl/cv/glip/object_detection/results/det_md_wo_fbs.py/20231129/999999-153230-results/models/md_best.pt', | |
device | |
) | |
da_alg_hyp = { | |
'MM-GTA5Det': { | |
'train_batch_size': 8, | |
'val_batch_size': 1, | |
'num_workers': 8, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 2e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 100, | |
'val_freq': 20, | |
'feat_align_loss_weight': 0.3, | |
'transform':transform | |
}, | |
'MM-CityscapesDet': { | |
'train_batch_size': 8, | |
'val_batch_size': 1, | |
'num_workers': 8, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 2e-6, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, | |
'scheduler': '', | |
'scheduler_args': {}, | |
'num_iters': 100, | |
'val_freq': 20, | |
'feat_align_loss_weight': 0.3, | |
'transform':transform | |
}, | |
} | |
baseline_da( | |
app_name, | |
scenario, | |
da_alg, | |
da_alg_hyp, | |
da_model, | |
device, | |
__file__, | |
"results", | |
collate_fn=collect_mm_fn | |
) |