Spaces:
Running
Running
import torch | |
from abc import ABC, abstractmethod | |
from utils.common.file import ensure_dir | |
from utils.common.log import logger | |
import time | |
from typing import List | |
class BaseModel(ABC): | |
def __init__(self, | |
name: str, | |
models_dict_path: str, | |
device: str): | |
self.name = name | |
self.models_dict_path = models_dict_path | |
self.models_dict = torch.load(models_dict_path, map_location=device) | |
self.device = device | |
assert set(self.get_required_model_components()) <= set(list(self.models_dict.keys())) | |
self.to(device) | |
logger.info(f'[model] init model: {dict(name=name, components=self.get_required_model_components())}') | |
logger.debug(self.models_dict) | |
def get_required_model_components(self) -> List[str]: | |
pass | |
def get_accuracy(self, test_loader, *args, **kwargs): | |
pass | |
def infer(self, x, *args, **kwargs): | |
pass | |
def save_model(self, p: str): | |
logger.debug(f'[model] save model: {self.name}') | |
ensure_dir(p) | |
torch.save(self.models_dict, p) | |
def load_model(self, p: str): | |
logger.debug(f'[model] load model: {self.name}, from {p}') | |
self.models_dict = torch.load(p, map_location=self.device) | |
def to(self, device): | |
logger.debug(f'[model] to device: {device}') | |
for k, v in self.models_dict.items(): | |
try: | |
self.models_dict[k] = v.to(device) | |
except Exception as e: | |
pass | |
def to_eval_mode(self, verbose=False): | |
if verbose: | |
logger.info(f'[model] to eval mode') | |
for k, v in self.models_dict.items(): | |
try: | |
self.models_dict[k].eval() | |
except Exception as e: | |
pass | |
def to_train_mode(self, verbose=False): | |
if verbose: | |
logger.info(f'[model] to train mode') | |
for k, v in self.models_dict.items(): | |
try: | |
self.models_dict[k].train() | |
except Exception as e: | |
pass | |