Spaces:
Running
Running
from timm.models.vision_transformer import VisionTransformer, Mlp, Block, PatchEmbed, PatchDropout, named_apply, \ | |
init_weights_vit_timm, get_init_weights_vit, _load_weights, checkpoint_seq | |
import torch | |
from torch import nn | |
from functools import partial | |
from typing import Union, Tuple, Callable, Optional | |
import logging | |
import math | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Callable, List, Optional, Sequence, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.jit import Final | |
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD, \ | |
OPENAI_CLIP_MEAN, OPENAI_CLIP_STD | |
from timm.layers import PatchEmbed, Mlp, DropPath, trunc_normal_, lecun_normal_, resample_patch_embed, \ | |
resample_abs_pos_embed, RmsNorm, PatchDropout, use_fused_attn, SwiGLUPacked | |
class ViTLikeBERT(nn.Module): | |
def __init__( | |
self, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
in_chans: int = 3, | |
num_classes: int = 1000, | |
global_pool: str = 'token', | |
embed_dim: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4., | |
qkv_bias: bool = True, | |
qk_norm: bool = False, | |
init_values: Optional[float] = None, | |
class_token: bool = True, | |
no_embed_class: bool = False, | |
pre_norm: bool = False, | |
fc_norm: Optional[bool] = None, | |
drop_rate: float = 0., | |
pos_drop_rate: float = 0., | |
patch_drop_rate: float = 0., | |
proj_drop_rate: float = 0., | |
attn_drop_rate: float = 0., | |
drop_path_rate: float = 0., | |
weight_init: str = '', | |
embed_layer: Callable = PatchEmbed, | |
norm_layer: Optional[Callable] = None, | |
act_layer: Optional[Callable] = None, | |
block_fn: Callable = Block, | |
mlp_layer: Callable = Mlp, | |
): | |
""" | |
Args: | |
img_size: Input image size. | |
patch_size: Patch size. | |
in_chans: Number of image input channels. | |
num_classes: Mumber of classes for classification head. | |
global_pool: Type of global pooling for final sequence (default: 'token'). | |
embed_dim: Transformer embedding dimension. | |
depth: Depth of transformer. | |
num_heads: Number of attention heads. | |
mlp_ratio: Ratio of mlp hidden dim to embedding dim. | |
qkv_bias: Enable bias for qkv projections if True. | |
init_values: Layer-scale init values (layer-scale enabled if not None). | |
class_token: Use class token. | |
fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'. | |
drop_rate: Head dropout rate. | |
pos_drop_rate: Position embedding dropout rate. | |
attn_drop_rate: Attention dropout rate. | |
drop_path_rate: Stochastic depth rate. | |
weight_init: Weight initialization scheme. | |
embed_layer: Patch embedding layer. | |
norm_layer: Normalization layer. | |
act_layer: MLP activation layer. | |
block_fn: Transformer block layer. | |
""" | |
super().__init__() | |
assert global_pool in ('', 'avg', 'token') | |
assert class_token or global_pool != 'token' | |
use_fc_norm = global_pool == 'avg' if fc_norm is None else fc_norm | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_prefix_tokens = 1 if class_token else 0 | |
self.no_embed_class = no_embed_class | |
self.grad_checkpointing = False | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None | |
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens | |
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * .02) | |
self.pos_drop = nn.Dropout(p=pos_drop_rate) | |
if patch_drop_rate > 0: | |
self.patch_drop = PatchDropout( | |
patch_drop_rate, | |
num_prefix_tokens=self.num_prefix_tokens, | |
) | |
else: | |
self.patch_drop = nn.Identity() | |
self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity() | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_norm=qk_norm, | |
init_values=init_values, | |
proj_drop=proj_drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
mlp_layer=mlp_layer, | |
) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity() | |
# Classifier Head | |
self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity() | |
self.head_drop = nn.Dropout(drop_rate) | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if weight_init != 'skip': | |
self.init_weights(weight_init) | |
def init_weights(self, mode=''): | |
assert mode in ('jax', 'jax_nlhb', 'moco', '') | |
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0. | |
trunc_normal_(self.pos_embed, std=.02) | |
if self.cls_token is not None: | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(get_init_weights_vit(mode, head_bias), self) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
init_weights_vit_timm(m) | |
def load_pretrained(self, checkpoint_path, prefix=''): | |
_load_weights(self, checkpoint_path, prefix) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'dist_token'} | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r'^cls_token|pos_embed|patch_embed', # stem and embed | |
blocks=[(r'^blocks\.(\d+)', None), (r'^norm', (99999,))] | |
) | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes: int, global_pool=None): | |
self.num_classes = num_classes | |
if global_pool is not None: | |
assert global_pool in ('', 'avg', 'token') | |
self.global_pool = global_pool | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def _pos_embed(self, x): | |
if self.no_embed_class: | |
# deit-3, updated JAX (big vision) | |
# position embedding does not overlap with class token, add then concat | |
x = x + self.pos_embed | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
else: | |
# original timm, JAX, and deit vit impl | |
# pos_embed has entry for class token, concat then add | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.pos_embed | |
return self.pos_drop(x) | |
def _intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, | |
): | |
outputs, num_blocks = [], len(self.blocks) | |
take_indices = set(range(num_blocks - n, num_blocks) if isinstance(n, int) else n) | |
# forward pass | |
x = self.patch_embed(x) | |
x = self._pos_embed(x) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in take_indices: | |
outputs.append(x) | |
return outputs | |
def get_intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, | |
reshape: bool = False, | |
return_class_token: bool = False, | |
norm: bool = False, | |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: | |
""" Intermediate layer accessor (NOTE: This is a WIP experiment). | |
Inspired by DINO / DINOv2 interface | |
""" | |
# take last n blocks if n is an int, if in is a sequence, select by matching indices | |
outputs = self._intermediate_layers(x, n) | |
if norm: | |
outputs = [self.norm(out) for out in outputs] | |
class_tokens = [out[:, 0:self.num_prefix_tokens] for out in outputs] | |
outputs = [out[:, self.num_prefix_tokens:] for out in outputs] | |
if reshape: | |
grid_size = self.patch_embed.grid_size | |
outputs = [ | |
out.reshape(x.shape[0], grid_size[0], grid_size[1], -1).permute(0, 3, 1, 2).contiguous() | |
for out in outputs | |
] | |
if return_class_token: | |
return tuple(zip(outputs, class_tokens)) | |
return tuple(outputs) | |
def forward_features(self, x): | |
x = self.patch_embed(x) | |
x = self._pos_embed(x) | |
x = self.patch_drop(x) | |
x = self.norm_pre(x) | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint_seq(self.blocks, x) | |
else: | |
x = self.blocks(x) | |
x = self.norm(x) | |
return x | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, self.num_prefix_tokens:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] | |
x = self.fc_norm(x) | |
x = self.head_drop(x) | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x) | |
x = self.forward_head(x) | |
return x | |