Spaces:
Running
Running
| from ..data_aug import cifar_like_image_test_aug, cifar_like_image_train_aug | |
| from ..ab_dataset import ABDataset | |
| from ..dataset_split import train_val_test_split | |
| from torchvision.datasets import ImageFolder | |
| import numpy as np | |
| from typing import Dict, List, Optional | |
| from torchvision import transforms | |
| from torchvision.transforms import Compose | |
| from utils.common.others import HiddenPrints | |
| from ..registery import dataset_register | |
| class SVHNSingle(ABDataset): | |
| def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
| classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
| if transform is None: | |
| mean, std = [0.5] * 3, [0.5] * 3 | |
| transform = transforms.Compose([ | |
| transforms.RandomCrop(32, padding=4), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) if split == 'train' else \ | |
| transforms.Compose([ | |
| transforms.Resize(32), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean, std) | |
| ]) | |
| self.transform = transform | |
| dataset = ImageFolder(root_dir, transform=transform) | |
| if len(ignore_classes) > 0: | |
| ignore_classes_idx = [classes.index(c) for c in ignore_classes] | |
| dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] | |
| if idx_map is not None: | |
| dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] | |
| dataset = train_val_test_split(dataset, split) | |
| return dataset | |