Spaces:
Running
Running
| from ..data_aug import imagenet_like_image_train_aug, imagenet_like_image_test_aug | |
| from ..ab_dataset import ABDataset | |
| from ..dataset_split import train_val_split, train_val_test_split | |
| from torchvision.datasets import ImageFolder | |
| import os | |
| from typing import Dict, List, Optional | |
| from torchvision.transforms import Compose | |
| from ..registery import dataset_register | |
| with open(os.path.join(os.path.dirname(__file__), 'stanfordcars_classes.txt'), 'r') as f: | |
| classes = [line.split(' ')[1].strip() for line in f.readlines()] | |
| assert len(classes) == 196 | |
| class Stanford_Cars(ABDataset): | |
| def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose], | |
| classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]): | |
| if transform is None: | |
| transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug() | |
| self.transform = transform | |
| #root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val') | |
| dataset = ImageFolder(root_dir, transform=transform) | |
| if len(ignore_classes) > 0: | |
| ignore_classes_idx = [classes.index(c) for c in ignore_classes] | |
| dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx] | |
| if idx_map is not None: | |
| dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples] | |
| dataset = train_val_test_split(dataset, split) | |
| return dataset | |