Spaces:
Running
Running
| import torch | |
| from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel | |
| from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
| from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil | |
| from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
| from sam import FMLoRA_sam_Util | |
| from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
| from sam import FM_to_MD_sam_Util | |
| from sam import ElasticsamUtil | |
| from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module | |
| from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
| from data import build_scenario | |
| import torch.nn.functional as F | |
| class ElasticDNN_sam_OfflineSegFMModel(ElasticDNN_OfflineSegFMModel): | |
| def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
| return FM_to_MD_sam_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], | |
| reducing_width_ratio, samples) | |
| def get_feature_hook(self) -> LayerActivation: | |
| return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) | |
| def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
| return ElasticsamUtil() | |
| def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
| return F.cross_entropy(self.infer(x), y) | |
| def get_lora_util(self) -> FMLoRA_Util: | |
| return FMLoRA_sam_Util() | |
| def get_task_head_params(self): | |
| head = get_module(self.models_dict['main'], 'head') | |
| return list(head.parameters()) | |
| class ElasticDNN_sam_OfflineSegMDModel(ElasticDNN_OfflineSegMDModel): | |
| def get_feature_hook(self) -> LayerActivation: | |
| return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device) | |
| def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
| return F.cross_entropy(self.infer(x).pred_masks, y) | |
| if __name__ == '__main__': | |
| # 1. init scenario | |
| scenario = build_scenario( | |
| source_datasets_name=['GTA5', 'SuperviselyPerson'], | |
| target_datasets_order=['Cityscapes', 'BaiduPerson'] * 10, | |
| da_mode='close_set', | |
| data_dirs={ | |
| 'GTA5': '/data/zql/datasets/GTA-ls-copy/GTA5', | |
| 'SuperviselyPerson': '/data/zql/datasets/supervisely_person/Supervisely Person Dataset', | |
| 'Cityscapes': '/data/zql/datasets/cityscape/', | |
| 'BaiduPerson': '/data/zql/datasets/baidu_person/clean_images/' | |
| }, | |
| ) | |
| # 2. init model\ | |
| torch.cuda.set_device(1) | |
| device = 'cuda' | |
| # from dnns.vit import vit_b_16 | |
| # seg_model = vit_b_16(pretrained=True, num_classes=scenario.num_classes) | |
| # from dnns.deeplabv3.head import DecoderLinear | |
| # head = DecoderLinear(scenario.num_classes, 16, 768, (224, 224)).to(device) | |
| # set_module(seg_model, 'head', head) | |
| # from types import MethodType | |
| # from timm.models.vision_transformer import VisionTransformer | |
| # def forward_head(self, x, pre_logits: bool = False): | |
| # return self.head(x) | |
| # VisionTransformer.forward_head = MethodType(forward_head, seg_model) | |
| from sam import Sammodel | |
| seg_model = Sammodel.from_pretrained('new_impl/cv/sam/sam_pretrained',ignore_mismatched_sizes=True,num_classes=scenario.num_classes) | |
| # from dnns.deeplabv3.head import DecoderLinear | |
| # head = DecoderLinear(scenario.num_classes, 16, 256, (224, 224)).to(device) | |
| # set_module(seg_model, 'mask_decoder.iou_prediction_head', head) | |
| fm_models_dict_path = save_models_dict_for_init({ | |
| 'main': seg_model | |
| }, __file__, 'fm_sam_pretrained_with_seg_head') | |
| fm_model = ElasticDNN_sam_OfflineSegFMModel('fm', fm_models_dict_path, device, scenario.num_classes) | |
| # 3. init alg | |
| models = { | |
| 'fm': fm_model | |
| } | |
| fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__)) | |
| from PIL import ImageFile | |
| ImageFile.LOAD_TRUNCATED_IMAGES = True | |
| # 4. run alg | |
| from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
| fm_lora_alg.run(scenario, hyps={ | |
| 'launch_tbboard': False, | |
| 'samples_size': (1, 3, 224, 224), | |
| 'ab_r': 8, | |
| 'train_batch_size': 16, | |
| 'val_batch_size': 256, | |
| 'num_workers': 16, | |
| 'optimizer': 'Adam', | |
| 'optimizer_args': {'lr': 5e-3, 'betas': [0.9, 0.999]}, | |
| 'scheduler': 'LambdaLR', | |
| 'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)}, | |
| 'num_iters': 80000, | |
| 'val_freq': 400 | |
| }) |