# Import necessary libraries from transformers import pipeline import gradio as gr # Load a lightweight image classification model model = pipeline("image-classification", model="facebook/deit-tiny-patch16-224", cache_dir="./model_cache") # Function to classify an uploaded image def classify_image(image): predictions = model(image) # Make predictions # Format predictions as a dictionary: Label -> Confidence return {pred["label"]: round(pred["score"], 4) for pred in predictions} # Create a Gradio interface for the app interface = gr.Interface( fn=classify_image, # Function to call inputs=gr.Image(type="pil"), # Input: Image (PIL format) outputs=gr.Label(), # Output: Label with confidence scores title="Image Classification App", description="Upload an image, and the app will classify it using a vision transformer model." ) # Run the app if __name__ == "__main__": interface.launch()