LEAHWA commited on
Commit
b6edda1
·
verified ·
1 Parent(s): 5daa7b8

Update OCR.py

Browse files
Files changed (1) hide show
  1. OCR.py +50 -50
OCR.py CHANGED
@@ -1,50 +1,50 @@
1
- import os
2
- import torch
3
- from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
4
- from PIL import Image
5
- import io
6
-
7
- # Set environment variable
8
- os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
9
-
10
- # Model and device setup
11
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
- model_id = "google/paligemma-3b-mix-224"
13
-
14
- # Load model and processor
15
- model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to(device)
16
- processor = AutoProcessor.from_pretrained(model_id)
17
-
18
- def extract_text_from_image(image_content):
19
- image = Image.open(io.BytesIO(image_content))
20
-
21
- # Prompt for detecting text
22
- prompt = "Extract all relevant details from this invoice."
23
-
24
- # Prepare inputs for the model
25
- inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
26
- input_len = inputs["input_ids"].shape[-1]
27
-
28
- with torch.inference_mode():
29
- # Generate the output
30
- generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
31
- generation = generation[0][input_len:]
32
- decoded = processor.decode(generation, skip_special_tokens=True)
33
-
34
- return decoded
35
-
36
- def extract_text_from_pdf(pdf_content):
37
- # For simplicity, let's assume you're converting the PDF to images first
38
- # You may use libraries like pdf2image to convert PDF pages to images
39
- # Then call extract_text_from_image for each image
40
- pass
41
-
42
- def extract_invoice_details(text):
43
- # Implement your logic to extract invoice details from the text
44
- details = {}
45
- # Example extraction logic
46
- details['Invoice Number'] = re.search(r'Invoice Number: (\S+)', text).group(1) if re.search(r'Invoice Number: (\S+)', text) else 'N/A'
47
- details['Amount'] = re.search(r'Total Amount Due: (\S+)', text).group(1) if re.search(r'Total Amount Due: (\S+)', text) else 'N/A'
48
- details['Invoice Date'] = re.search(r'Invoice Date: (\S+)', text).group(1) if re.search(r'Invoice Date: (\S+)', text) else 'N/A'
49
- details['Due Date'] = re.search(r'Due Date: (\S+)', text).group(1) if re.search(r'Due Date: (\S+)', text) else 'N/A'
50
- return details
 
1
+ import os
2
+ import torch
3
+ from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
4
+ from PIL import Image
5
+ import io
6
+ HF_TOKEN = os.environ.get("HF_TOKEN")
7
+ # Set environment variable
8
+ os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
9
+
10
+ # Model and device setup
11
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
+ model_id = "google/paligemma-3b-mix-224"
13
+
14
+ # Load model and processor
15
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to(device)
16
+ processor = AutoProcessor.from_pretrained(model_id)
17
+
18
+ def extract_text_from_image(image_content):
19
+ image = Image.open(io.BytesIO(image_content))
20
+
21
+ # Prompt for detecting text
22
+ prompt = "Extract all relevant details from this invoice."
23
+
24
+ # Prepare inputs for the model
25
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
26
+ input_len = inputs["input_ids"].shape[-1]
27
+
28
+ with torch.inference_mode():
29
+ # Generate the output
30
+ generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
31
+ generation = generation[0][input_len:]
32
+ decoded = processor.decode(generation, skip_special_tokens=True)
33
+
34
+ return decoded
35
+
36
+ def extract_text_from_pdf(pdf_content):
37
+ # For simplicity, let's assume you're converting the PDF to images first
38
+ # You may use libraries like pdf2image to convert PDF pages to images
39
+ # Then call extract_text_from_image for each image
40
+ pass
41
+
42
+ def extract_invoice_details(text):
43
+ # Implement your logic to extract invoice details from the text
44
+ details = {}
45
+ # Example extraction logic
46
+ details['Invoice Number'] = re.search(r'Invoice Number: (\S+)', text).group(1) if re.search(r'Invoice Number: (\S+)', text) else 'N/A'
47
+ details['Amount'] = re.search(r'Total Amount Due: (\S+)', text).group(1) if re.search(r'Total Amount Due: (\S+)', text) else 'N/A'
48
+ details['Invoice Date'] = re.search(r'Invoice Date: (\S+)', text).group(1) if re.search(r'Invoice Date: (\S+)', text) else 'N/A'
49
+ details['Due Date'] = re.search(r'Due Date: (\S+)', text).group(1) if re.search(r'Due Date: (\S+)', text) else 'N/A'
50
+ return details