Spaces:
Sleeping
Sleeping
Update OCR.py
Browse files
OCR.py
CHANGED
@@ -1,50 +1,50 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
4 |
-
from PIL import Image
|
5 |
-
import io
|
6 |
-
|
7 |
-
# Set environment variable
|
8 |
-
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
|
9 |
-
|
10 |
-
# Model and device setup
|
11 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
-
model_id = "google/paligemma-3b-mix-224"
|
13 |
-
|
14 |
-
# Load model and processor
|
15 |
-
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to(device)
|
16 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
-
|
18 |
-
def extract_text_from_image(image_content):
|
19 |
-
image = Image.open(io.BytesIO(image_content))
|
20 |
-
|
21 |
-
# Prompt for detecting text
|
22 |
-
prompt = "Extract all relevant details from this invoice."
|
23 |
-
|
24 |
-
# Prepare inputs for the model
|
25 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
26 |
-
input_len = inputs["input_ids"].shape[-1]
|
27 |
-
|
28 |
-
with torch.inference_mode():
|
29 |
-
# Generate the output
|
30 |
-
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
|
31 |
-
generation = generation[0][input_len:]
|
32 |
-
decoded = processor.decode(generation, skip_special_tokens=True)
|
33 |
-
|
34 |
-
return decoded
|
35 |
-
|
36 |
-
def extract_text_from_pdf(pdf_content):
|
37 |
-
# For simplicity, let's assume you're converting the PDF to images first
|
38 |
-
# You may use libraries like pdf2image to convert PDF pages to images
|
39 |
-
# Then call extract_text_from_image for each image
|
40 |
-
pass
|
41 |
-
|
42 |
-
def extract_invoice_details(text):
|
43 |
-
# Implement your logic to extract invoice details from the text
|
44 |
-
details = {}
|
45 |
-
# Example extraction logic
|
46 |
-
details['Invoice Number'] = re.search(r'Invoice Number: (\S+)', text).group(1) if re.search(r'Invoice Number: (\S+)', text) else 'N/A'
|
47 |
-
details['Amount'] = re.search(r'Total Amount Due: (\S+)', text).group(1) if re.search(r'Total Amount Due: (\S+)', text) else 'N/A'
|
48 |
-
details['Invoice Date'] = re.search(r'Invoice Date: (\S+)', text).group(1) if re.search(r'Invoice Date: (\S+)', text) else 'N/A'
|
49 |
-
details['Due Date'] = re.search(r'Due Date: (\S+)', text).group(1) if re.search(r'Due Date: (\S+)', text) else 'N/A'
|
50 |
-
return details
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
7 |
+
# Set environment variable
|
8 |
+
os.environ['PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION'] = 'python'
|
9 |
+
|
10 |
+
# Model and device setup
|
11 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
12 |
+
model_id = "google/paligemma-3b-mix-224"
|
13 |
+
|
14 |
+
# Load model and processor
|
15 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).to(device)
|
16 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
17 |
+
|
18 |
+
def extract_text_from_image(image_content):
|
19 |
+
image = Image.open(io.BytesIO(image_content))
|
20 |
+
|
21 |
+
# Prompt for detecting text
|
22 |
+
prompt = "Extract all relevant details from this invoice."
|
23 |
+
|
24 |
+
# Prepare inputs for the model
|
25 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
26 |
+
input_len = inputs["input_ids"].shape[-1]
|
27 |
+
|
28 |
+
with torch.inference_mode():
|
29 |
+
# Generate the output
|
30 |
+
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
|
31 |
+
generation = generation[0][input_len:]
|
32 |
+
decoded = processor.decode(generation, skip_special_tokens=True)
|
33 |
+
|
34 |
+
return decoded
|
35 |
+
|
36 |
+
def extract_text_from_pdf(pdf_content):
|
37 |
+
# For simplicity, let's assume you're converting the PDF to images first
|
38 |
+
# You may use libraries like pdf2image to convert PDF pages to images
|
39 |
+
# Then call extract_text_from_image for each image
|
40 |
+
pass
|
41 |
+
|
42 |
+
def extract_invoice_details(text):
|
43 |
+
# Implement your logic to extract invoice details from the text
|
44 |
+
details = {}
|
45 |
+
# Example extraction logic
|
46 |
+
details['Invoice Number'] = re.search(r'Invoice Number: (\S+)', text).group(1) if re.search(r'Invoice Number: (\S+)', text) else 'N/A'
|
47 |
+
details['Amount'] = re.search(r'Total Amount Due: (\S+)', text).group(1) if re.search(r'Total Amount Due: (\S+)', text) else 'N/A'
|
48 |
+
details['Invoice Date'] = re.search(r'Invoice Date: (\S+)', text).group(1) if re.search(r'Invoice Date: (\S+)', text) else 'N/A'
|
49 |
+
details['Due Date'] = re.search(r'Due Date: (\S+)', text).group(1) if re.search(r'Due Date: (\S+)', text) else 'N/A'
|
50 |
+
return details
|