LAP-DEV commited on
Commit
f60c46f
·
verified ·
1 Parent(s): 6950439

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -20
README.md CHANGED
@@ -26,8 +26,8 @@ A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper
26
  - ## Run Locally
27
 
28
  ### Prerequisite
29
- To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `FFmpeg`<br>
30
- And if you're not using an Nvida GPU, or using a different `CUDA` version than 12.4, edit the **file requirements.txt** to match your environment
31
 
32
  Please follow the links below to install the necessary software:
33
  - git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
@@ -35,7 +35,7 @@ A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper
35
  - FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
36
  - CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
37
 
38
- After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**
39
 
40
  ### Installation Using the Script Files
41
 
@@ -63,25 +63,22 @@ A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper
63
 
64
  5. Connect to the WebUI with your browser at `http://localhost:7860`
65
 
66
- If needed, update the **docker-compose.yaml** to match your environment
67
 
68
  # VRAM Usages
69
- This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed
 
 
 
 
70
 
71
- According to faster-whisper, the efficiency of the optimized whisper model is as follows:
72
- | Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
73
- |-------------------|-----------|-----------|-------|-----------------|-----------------|
74
- | openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
75
- | faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
76
-
77
- ## Available models
78
- This is Whisper's original VRAM usage table for models:
79
- | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
80
- |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
81
- | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
82
- | base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
83
- | small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
84
- | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
85
- | large | 1550 M | N/A | `large` | ~10 GB | 1x |
86
 
87
  Note: `.en` models are for English only, and you can use the `Translate to English` option from the other models
 
26
  - ## Run Locally
27
 
28
  ### Prerequisite
29
+ To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `FFmpeg`<BR>
30
+ And if you're not using an Nvida GPU, or using a different `CUDA` version than 12.4, edit the **file requirements.txt** to match your environment
31
 
32
  Please follow the links below to install the necessary software:
33
  - git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
 
35
  - FFmpeg : [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
36
  - CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)
37
 
38
+ After installing FFmpeg, make sure to **add** the `FFmpeg/bin` folder to your system **PATH**
39
 
40
  ### Installation Using the Script Files
41
 
 
63
 
64
  5. Connect to the WebUI with your browser at `http://localhost:7860`
65
 
66
+ Note: If needed, update the **docker-compose.yaml** to match your environment
67
 
68
  # VRAM Usages
69
+ - This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.<BR>According to faster-whisper, the efficiency of the optimized whisper model is as follows:
70
+ | Implementation | Precision | Beam size | Time | Max. GPU memory | Max. CPU memory |
71
+ |-------------------|-----------|-----------|-------|-----------------|-----------------|
72
+ | openai/whisper | fp16 | 5 | 4m30s | 11325MB | 9439MB |
73
+ | faster-whisper | fp16 | 5 | 54s | 4755MB | 3244MB |
74
 
75
+ - Whisper's original VRAM usage table for available models:
76
+ | Size | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
77
+ |:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
78
+ | tiny | 39 M | `tiny.en` | `tiny` | ~1 GB | ~32x |
79
+ | base | 74 M | `base.en` | `base` | ~1 GB | ~16x |
80
+ | small | 244 M | `small.en` | `small` | ~2 GB | ~6x |
81
+ | medium | 769 M | `medium.en` | `medium` | ~5 GB | ~2x |
82
+ | large | 1550 M | N/A | `large` | ~10 GB | 1x |
 
 
 
 
 
 
 
83
 
84
  Note: `.en` models are for English only, and you can use the `Translate to English` option from the other models