Upload whisper_parameter.py
Browse files
modules/whisper/whisper_parameter.py
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, fields
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from typing import Optional, Dict
|
| 4 |
+
import yaml
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@dataclass
|
| 8 |
+
class WhisperParameters:
|
| 9 |
+
model_size: gr.Dropdown
|
| 10 |
+
lang: gr.Dropdown
|
| 11 |
+
is_translate: gr.Checkbox
|
| 12 |
+
beam_size: gr.Number
|
| 13 |
+
log_prob_threshold: gr.Number
|
| 14 |
+
no_speech_threshold: gr.Number
|
| 15 |
+
compute_type: gr.Dropdown
|
| 16 |
+
best_of: gr.Number
|
| 17 |
+
patience: gr.Number
|
| 18 |
+
condition_on_previous_text: gr.Checkbox
|
| 19 |
+
prompt_reset_on_temperature: gr.Slider
|
| 20 |
+
initial_prompt: gr.Textbox
|
| 21 |
+
temperature: gr.Slider
|
| 22 |
+
compression_ratio_threshold: gr.Number
|
| 23 |
+
vad_filter: gr.Checkbox
|
| 24 |
+
threshold: gr.Slider
|
| 25 |
+
min_speech_duration_ms: gr.Number
|
| 26 |
+
max_speech_duration_s: gr.Number
|
| 27 |
+
min_silence_duration_ms: gr.Number
|
| 28 |
+
speech_pad_ms: gr.Number
|
| 29 |
+
batch_size: gr.Number
|
| 30 |
+
is_diarize: gr.Checkbox
|
| 31 |
+
hf_token: gr.Textbox
|
| 32 |
+
diarization_device: gr.Dropdown
|
| 33 |
+
length_penalty: gr.Number
|
| 34 |
+
repetition_penalty: gr.Number
|
| 35 |
+
no_repeat_ngram_size: gr.Number
|
| 36 |
+
prefix: gr.Textbox
|
| 37 |
+
suppress_blank: gr.Checkbox
|
| 38 |
+
suppress_tokens: gr.Textbox
|
| 39 |
+
max_initial_timestamp: gr.Number
|
| 40 |
+
word_timestamps: gr.Checkbox
|
| 41 |
+
prepend_punctuations: gr.Textbox
|
| 42 |
+
append_punctuations: gr.Textbox
|
| 43 |
+
max_new_tokens: gr.Number
|
| 44 |
+
chunk_length: gr.Number
|
| 45 |
+
hallucination_silence_threshold: gr.Number
|
| 46 |
+
hotwords: gr.Textbox
|
| 47 |
+
language_detection_threshold: gr.Number
|
| 48 |
+
language_detection_segments: gr.Number
|
| 49 |
+
is_bgm_separate: gr.Checkbox
|
| 50 |
+
uvr_model_size: gr.Dropdown
|
| 51 |
+
uvr_device: gr.Dropdown
|
| 52 |
+
uvr_segment_size: gr.Number
|
| 53 |
+
uvr_save_file: gr.Checkbox
|
| 54 |
+
uvr_enable_offload: gr.Checkbox
|
| 55 |
+
"""
|
| 56 |
+
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing.
|
| 57 |
+
This data class is used to mitigate the key-value problem between Gradio components and function parameters.
|
| 58 |
+
Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471
|
| 59 |
+
See more about Gradio pre-processing: https://www.gradio.app/docs/components
|
| 60 |
+
|
| 61 |
+
Attributes
|
| 62 |
+
----------
|
| 63 |
+
model_size: gr.Dropdown
|
| 64 |
+
Whisper model size.
|
| 65 |
+
|
| 66 |
+
lang: gr.Dropdown
|
| 67 |
+
Source language of the file to transcribe.
|
| 68 |
+
|
| 69 |
+
is_translate: gr.Checkbox
|
| 70 |
+
Boolean value that determines whether to translate to English.
|
| 71 |
+
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
| 72 |
+
|
| 73 |
+
beam_size: gr.Number
|
| 74 |
+
Int value that is used for decoding option.
|
| 75 |
+
|
| 76 |
+
log_prob_threshold: gr.Number
|
| 77 |
+
If the average log probability over sampled tokens is below this value, treat as failed.
|
| 78 |
+
|
| 79 |
+
no_speech_threshold: gr.Number
|
| 80 |
+
If the no_speech probability is higher than this value AND
|
| 81 |
+
the average log probability over sampled tokens is below `log_prob_threshold`,
|
| 82 |
+
consider the segment as silent.
|
| 83 |
+
|
| 84 |
+
compute_type: gr.Dropdown
|
| 85 |
+
compute type for transcription.
|
| 86 |
+
see more info : https://opennmt.net/CTranslate2/quantization.html
|
| 87 |
+
|
| 88 |
+
best_of: gr.Number
|
| 89 |
+
Number of candidates when sampling with non-zero temperature.
|
| 90 |
+
|
| 91 |
+
patience: gr.Number
|
| 92 |
+
Beam search patience factor.
|
| 93 |
+
|
| 94 |
+
condition_on_previous_text: gr.Checkbox
|
| 95 |
+
if True, the previous output of the model is provided as a prompt for the next window;
|
| 96 |
+
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
| 97 |
+
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
| 98 |
+
|
| 99 |
+
initial_prompt: gr.Textbox
|
| 100 |
+
Optional text to provide as a prompt for the first window. This can be used to provide, or
|
| 101 |
+
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns
|
| 102 |
+
to make it more likely to predict those word correctly.
|
| 103 |
+
|
| 104 |
+
temperature: gr.Slider
|
| 105 |
+
Temperature for sampling. It can be a tuple of temperatures,
|
| 106 |
+
which will be successively used upon failures according to either
|
| 107 |
+
`compression_ratio_threshold` or `log_prob_threshold`.
|
| 108 |
+
|
| 109 |
+
compression_ratio_threshold: gr.Number
|
| 110 |
+
If the gzip compression ratio is above this value, treat as failed
|
| 111 |
+
|
| 112 |
+
vad_filter: gr.Checkbox
|
| 113 |
+
Enable the voice activity detection (VAD) to filter out parts of the audio
|
| 114 |
+
without speech. This step is using the Silero VAD model
|
| 115 |
+
https://github.com/snakers4/silero-vad.
|
| 116 |
+
|
| 117 |
+
threshold: gr.Slider
|
| 118 |
+
This parameter is related with Silero VAD. Speech threshold.
|
| 119 |
+
Silero VAD outputs speech probabilities for each audio chunk,
|
| 120 |
+
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
| 121 |
+
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
| 122 |
+
|
| 123 |
+
min_speech_duration_ms: gr.Number
|
| 124 |
+
This parameter is related with Silero VAD. Final speech chunks shorter min_speech_duration_ms are thrown out.
|
| 125 |
+
|
| 126 |
+
max_speech_duration_s: gr.Number
|
| 127 |
+
This parameter is related with Silero VAD. Maximum duration of speech chunks in seconds. Chunks longer
|
| 128 |
+
than max_speech_duration_s will be split at the timestamp of the last silence that
|
| 129 |
+
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
|
| 130 |
+
split aggressively just before max_speech_duration_s.
|
| 131 |
+
|
| 132 |
+
min_silence_duration_ms: gr.Number
|
| 133 |
+
This parameter is related with Silero VAD. In the end of each speech chunk wait for min_silence_duration_ms
|
| 134 |
+
before separating it
|
| 135 |
+
|
| 136 |
+
speech_pad_ms: gr.Number
|
| 137 |
+
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side
|
| 138 |
+
|
| 139 |
+
batch_size: gr.Number
|
| 140 |
+
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe
|
| 141 |
+
|
| 142 |
+
is_diarize: gr.Checkbox
|
| 143 |
+
This parameter is related with whisperx. Boolean value that determines whether to diarize or not.
|
| 144 |
+
|
| 145 |
+
hf_token: gr.Textbox
|
| 146 |
+
This parameter is related with whisperx. Huggingface token is needed to download diarization models.
|
| 147 |
+
Read more about : https://huggingface.co/pyannote/speaker-diarization-3.1#requirements
|
| 148 |
+
|
| 149 |
+
diarization_device: gr.Dropdown
|
| 150 |
+
This parameter is related with whisperx. Device to run diarization model
|
| 151 |
+
|
| 152 |
+
length_penalty: gr.Number
|
| 153 |
+
This parameter is related to faster-whisper. Exponential length penalty constant.
|
| 154 |
+
|
| 155 |
+
repetition_penalty: gr.Number
|
| 156 |
+
This parameter is related to faster-whisper. Penalty applied to the score of previously generated tokens
|
| 157 |
+
(set > 1 to penalize).
|
| 158 |
+
|
| 159 |
+
no_repeat_ngram_size: gr.Number
|
| 160 |
+
This parameter is related to faster-whisper. Prevent repetitions of n-grams with this size (set 0 to disable).
|
| 161 |
+
|
| 162 |
+
prefix: gr.Textbox
|
| 163 |
+
This parameter is related to faster-whisper. Optional text to provide as a prefix for the first window.
|
| 164 |
+
|
| 165 |
+
suppress_blank: gr.Checkbox
|
| 166 |
+
This parameter is related to faster-whisper. Suppress blank outputs at the beginning of the sampling.
|
| 167 |
+
|
| 168 |
+
suppress_tokens: gr.Textbox
|
| 169 |
+
This parameter is related to faster-whisper. List of token IDs to suppress. -1 will suppress a default set
|
| 170 |
+
of symbols as defined in the model config.json file.
|
| 171 |
+
|
| 172 |
+
max_initial_timestamp: gr.Number
|
| 173 |
+
This parameter is related to faster-whisper. The initial timestamp cannot be later than this.
|
| 174 |
+
|
| 175 |
+
word_timestamps: gr.Checkbox
|
| 176 |
+
This parameter is related to faster-whisper. Extract word-level timestamps using the cross-attention pattern
|
| 177 |
+
and dynamic time warping, and include the timestamps for each word in each segment.
|
| 178 |
+
|
| 179 |
+
prepend_punctuations: gr.Textbox
|
| 180 |
+
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
| 181 |
+
with the next word.
|
| 182 |
+
|
| 183 |
+
append_punctuations: gr.Textbox
|
| 184 |
+
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols
|
| 185 |
+
with the previous word.
|
| 186 |
+
|
| 187 |
+
max_new_tokens: gr.Number
|
| 188 |
+
This parameter is related to faster-whisper. Maximum number of new tokens to generate per-chunk. If not set,
|
| 189 |
+
the maximum will be set by the default max_length.
|
| 190 |
+
|
| 191 |
+
chunk_length: gr.Number
|
| 192 |
+
This parameter is related to faster-whisper and insanely-fast-whisper. The length of audio segments in seconds.
|
| 193 |
+
If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.
|
| 194 |
+
|
| 195 |
+
hallucination_silence_threshold: gr.Number
|
| 196 |
+
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold
|
| 197 |
+
(in seconds) when a possible hallucination is detected.
|
| 198 |
+
|
| 199 |
+
hotwords: gr.Textbox
|
| 200 |
+
This parameter is related to faster-whisper. Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
|
| 201 |
+
|
| 202 |
+
language_detection_threshold: gr.Number
|
| 203 |
+
This parameter is related to faster-whisper. If the maximum probability of the language tokens is higher than this value, the language is detected.
|
| 204 |
+
|
| 205 |
+
language_detection_segments: gr.Number
|
| 206 |
+
This parameter is related to faster-whisper. Number of segments to consider for the language detection.
|
| 207 |
+
|
| 208 |
+
is_separate_bgm: gr.Checkbox
|
| 209 |
+
This parameter is related to UVR. Boolean value that determines whether to separate bgm or not.
|
| 210 |
+
|
| 211 |
+
uvr_model_size: gr.Dropdown
|
| 212 |
+
This parameter is related to UVR. UVR model size.
|
| 213 |
+
|
| 214 |
+
uvr_device: gr.Dropdown
|
| 215 |
+
This parameter is related to UVR. Device to run UVR model.
|
| 216 |
+
|
| 217 |
+
uvr_segment_size: gr.Number
|
| 218 |
+
This parameter is related to UVR. Segment size for UVR model.
|
| 219 |
+
|
| 220 |
+
uvr_save_file: gr.Checkbox
|
| 221 |
+
This parameter is related to UVR. Boolean value that determines whether to save the file or not.
|
| 222 |
+
|
| 223 |
+
uvr_enable_offload: gr.Checkbox
|
| 224 |
+
This parameter is related to UVR. Boolean value that determines whether to offload the UVR model or not
|
| 225 |
+
after each transcription.
|
| 226 |
+
"""
|
| 227 |
+
|
| 228 |
+
def as_list(self) -> list:
|
| 229 |
+
"""
|
| 230 |
+
Converts the data class attributes into a list, Use in Gradio UI before Gradio pre-processing.
|
| 231 |
+
See more about Gradio pre-processing: : https://www.gradio.app/docs/components
|
| 232 |
+
|
| 233 |
+
Returns
|
| 234 |
+
----------
|
| 235 |
+
A list of Gradio components
|
| 236 |
+
"""
|
| 237 |
+
return [getattr(self, f.name) for f in fields(self)]
|
| 238 |
+
|
| 239 |
+
@staticmethod
|
| 240 |
+
def as_value(*args) -> 'WhisperValues':
|
| 241 |
+
"""
|
| 242 |
+
To use Whisper parameters in function after Gradio post-processing.
|
| 243 |
+
See more about Gradio post-processing: : https://www.gradio.app/docs/components
|
| 244 |
+
|
| 245 |
+
Returns
|
| 246 |
+
----------
|
| 247 |
+
WhisperValues
|
| 248 |
+
Data class that has values of parameters
|
| 249 |
+
"""
|
| 250 |
+
return WhisperValues(*args)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
@dataclass
|
| 254 |
+
class WhisperValues:
|
| 255 |
+
model_size: str = "large-v2"
|
| 256 |
+
lang: Optional[str] = None
|
| 257 |
+
is_translate: bool = False
|
| 258 |
+
beam_size: int = 5
|
| 259 |
+
log_prob_threshold: float = -1.0
|
| 260 |
+
no_speech_threshold: float = 0.6
|
| 261 |
+
compute_type: str = "float16"
|
| 262 |
+
best_of: int = 5
|
| 263 |
+
patience: float = 1.0
|
| 264 |
+
condition_on_previous_text: bool = True
|
| 265 |
+
prompt_reset_on_temperature: float = 0.5
|
| 266 |
+
initial_prompt: Optional[str] = None
|
| 267 |
+
temperature: float = 0.0
|
| 268 |
+
compression_ratio_threshold: float = 2.4
|
| 269 |
+
vad_filter: bool = False
|
| 270 |
+
threshold: float = 0.5
|
| 271 |
+
min_speech_duration_ms: int = 250
|
| 272 |
+
max_speech_duration_s: float = float("inf")
|
| 273 |
+
min_silence_duration_ms: int = 2000
|
| 274 |
+
speech_pad_ms: int = 400
|
| 275 |
+
batch_size: int = 24
|
| 276 |
+
is_diarize: bool = False
|
| 277 |
+
hf_token: str = ""
|
| 278 |
+
diarization_device: str = "cuda"
|
| 279 |
+
length_penalty: float = 1.0
|
| 280 |
+
repetition_penalty: float = 1.0
|
| 281 |
+
no_repeat_ngram_size: int = 0
|
| 282 |
+
prefix: Optional[str] = None
|
| 283 |
+
suppress_blank: bool = True
|
| 284 |
+
suppress_tokens: Optional[str] = "[-1]"
|
| 285 |
+
max_initial_timestamp: float = 0.0
|
| 286 |
+
word_timestamps: bool = False
|
| 287 |
+
prepend_punctuations: Optional[str] = "\"'“¿([{-"
|
| 288 |
+
append_punctuations: Optional[str] = "\"'.。,,!!??::”)]}、"
|
| 289 |
+
max_new_tokens: Optional[int] = None
|
| 290 |
+
chunk_length: Optional[int] = 30
|
| 291 |
+
hallucination_silence_threshold: Optional[float] = None
|
| 292 |
+
hotwords: Optional[str] = None
|
| 293 |
+
language_detection_threshold: Optional[float] = None
|
| 294 |
+
language_detection_segments: int = 1
|
| 295 |
+
is_bgm_separate: bool = False
|
| 296 |
+
uvr_model_size: str = "UVR-MDX-NET-Inst_HQ_4"
|
| 297 |
+
uvr_device: str = "cuda"
|
| 298 |
+
uvr_segment_size: int = 256
|
| 299 |
+
uvr_save_file: bool = False
|
| 300 |
+
uvr_enable_offload: bool = True
|
| 301 |
+
"""
|
| 302 |
+
A data class to use Whisper parameters.
|
| 303 |
+
"""
|
| 304 |
+
|
| 305 |
+
def to_yaml(self) -> Dict:
|
| 306 |
+
data = {
|
| 307 |
+
"whisper": {
|
| 308 |
+
"model_size": self.model_size,
|
| 309 |
+
"lang": "Automatic Detection" if self.lang is None else self.lang,
|
| 310 |
+
"is_translate": self.is_translate,
|
| 311 |
+
"beam_size": self.beam_size,
|
| 312 |
+
"log_prob_threshold": self.log_prob_threshold,
|
| 313 |
+
"no_speech_threshold": self.no_speech_threshold,
|
| 314 |
+
"best_of": self.best_of,
|
| 315 |
+
"patience": self.patience,
|
| 316 |
+
"condition_on_previous_text": self.condition_on_previous_text,
|
| 317 |
+
"prompt_reset_on_temperature": self.prompt_reset_on_temperature,
|
| 318 |
+
"initial_prompt": None if not self.initial_prompt else self.initial_prompt,
|
| 319 |
+
"temperature": self.temperature,
|
| 320 |
+
"compression_ratio_threshold": self.compression_ratio_threshold,
|
| 321 |
+
"batch_size": self.batch_size,
|
| 322 |
+
"length_penalty": self.length_penalty,
|
| 323 |
+
"repetition_penalty": self.repetition_penalty,
|
| 324 |
+
"no_repeat_ngram_size": self.no_repeat_ngram_size,
|
| 325 |
+
"prefix": None if not self.prefix else self.prefix,
|
| 326 |
+
"suppress_blank": self.suppress_blank,
|
| 327 |
+
"suppress_tokens": self.suppress_tokens,
|
| 328 |
+
"max_initial_timestamp": self.max_initial_timestamp,
|
| 329 |
+
"word_timestamps": self.word_timestamps,
|
| 330 |
+
"prepend_punctuations": self.prepend_punctuations,
|
| 331 |
+
"append_punctuations": self.append_punctuations,
|
| 332 |
+
"max_new_tokens": self.max_new_tokens,
|
| 333 |
+
"chunk_length": self.chunk_length,
|
| 334 |
+
"hallucination_silence_threshold": self.hallucination_silence_threshold,
|
| 335 |
+
"hotwords": None if not self.hotwords else self.hotwords,
|
| 336 |
+
"language_detection_threshold": self.language_detection_threshold,
|
| 337 |
+
"language_detection_segments": self.language_detection_segments,
|
| 338 |
+
},
|
| 339 |
+
"vad": {
|
| 340 |
+
"vad_filter": self.vad_filter,
|
| 341 |
+
"threshold": self.threshold,
|
| 342 |
+
"min_speech_duration_ms": self.min_speech_duration_ms,
|
| 343 |
+
"max_speech_duration_s": self.max_speech_duration_s,
|
| 344 |
+
"min_silence_duration_ms": self.min_silence_duration_ms,
|
| 345 |
+
"speech_pad_ms": self.speech_pad_ms,
|
| 346 |
+
},
|
| 347 |
+
"diarization": {
|
| 348 |
+
"is_diarize": self.is_diarize,
|
| 349 |
+
"hf_token": self.hf_token
|
| 350 |
+
},
|
| 351 |
+
"bgm_separation": {
|
| 352 |
+
"is_separate_bgm": self.is_bgm_separate,
|
| 353 |
+
"model_size": self.uvr_model_size,
|
| 354 |
+
"segment_size": self.uvr_segment_size,
|
| 355 |
+
"save_file": self.uvr_save_file,
|
| 356 |
+
"enable_offload": self.uvr_enable_offload
|
| 357 |
+
},
|
| 358 |
+
}
|
| 359 |
+
return data
|
| 360 |
+
|
| 361 |
+
def as_list(self) -> list:
|
| 362 |
+
"""
|
| 363 |
+
Converts the data class attributes into a list
|
| 364 |
+
|
| 365 |
+
Returns
|
| 366 |
+
----------
|
| 367 |
+
A list of Whisper parameters
|
| 368 |
+
"""
|
| 369 |
+
return [getattr(self, f.name) for f in fields(self)]
|