Upload whisper_base.py
Browse files- modules/whisper/whisper_base.py +738 -0
modules/whisper/whisper_base.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import whisper
|
4 |
+
import gradio as gr
|
5 |
+
import torchaudio
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from typing import BinaryIO, Union, Tuple, List
|
8 |
+
import numpy as np
|
9 |
+
from datetime import datetime
|
10 |
+
from faster_whisper.vad import VadOptions
|
11 |
+
from dataclasses import astuple
|
12 |
+
import gc
|
13 |
+
from copy import deepcopy
|
14 |
+
from modules.vad.silero_vad import merge_chunks, Segment
|
15 |
+
from modules.uvr.music_separator import MusicSeparator
|
16 |
+
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
17 |
+
UVR_MODELS_DIR)
|
18 |
+
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, get_plaintext, get_csv, write_file, safe_filename
|
19 |
+
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
|
20 |
+
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
|
21 |
+
from modules.whisper.whisper_parameter import *
|
22 |
+
from modules.diarize.diarizer import Diarizer
|
23 |
+
from modules.vad.silero_vad import SileroVAD
|
24 |
+
from modules.translation.nllb_inference import NLLBInference
|
25 |
+
from modules.translation.nllb_inference import NLLB_AVAILABLE_LANGS
|
26 |
+
import faster_whisper
|
27 |
+
|
28 |
+
class WhisperBase(ABC):
|
29 |
+
def __init__(self,
|
30 |
+
model_dir: str = WHISPER_MODELS_DIR,
|
31 |
+
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
32 |
+
uvr_model_dir: str = UVR_MODELS_DIR,
|
33 |
+
output_dir: str = OUTPUT_DIR,
|
34 |
+
):
|
35 |
+
self.model_dir = model_dir
|
36 |
+
self.output_dir = output_dir
|
37 |
+
os.makedirs(self.output_dir, exist_ok=True)
|
38 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
39 |
+
self.diarizer = Diarizer(
|
40 |
+
model_dir=diarization_model_dir
|
41 |
+
)
|
42 |
+
self.vad = SileroVAD()
|
43 |
+
self.music_separator = MusicSeparator(
|
44 |
+
model_dir=uvr_model_dir,
|
45 |
+
output_dir=os.path.join(output_dir, "UVR")
|
46 |
+
)
|
47 |
+
|
48 |
+
self.model = None
|
49 |
+
self.current_model_size = None
|
50 |
+
self.available_models = whisper.available_models()
|
51 |
+
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
52 |
+
#self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
53 |
+
self.translatable_models = whisper.available_models()
|
54 |
+
self.device = self.get_device()
|
55 |
+
self.available_compute_types = ["float16", "float32"]
|
56 |
+
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
57 |
+
|
58 |
+
@abstractmethod
|
59 |
+
def transcribe(self,
|
60 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
61 |
+
progress: gr.Progress = gr.Progress(),
|
62 |
+
*whisper_params,
|
63 |
+
):
|
64 |
+
"""Inference whisper model to transcribe"""
|
65 |
+
pass
|
66 |
+
|
67 |
+
@abstractmethod
|
68 |
+
def update_model(self,
|
69 |
+
model_size: str,
|
70 |
+
compute_type: str,
|
71 |
+
progress: gr.Progress = gr.Progress()
|
72 |
+
):
|
73 |
+
"""Initialize whisper model"""
|
74 |
+
pass
|
75 |
+
|
76 |
+
def run(self,
|
77 |
+
audio: Union[str, BinaryIO, np.ndarray],
|
78 |
+
progress: gr.Progress = gr.Progress(),
|
79 |
+
add_timestamp: bool = True,
|
80 |
+
*whisper_params,
|
81 |
+
) -> Tuple[List[dict], float]:
|
82 |
+
"""
|
83 |
+
Run transcription with conditional pre-processing and post-processing.
|
84 |
+
The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
|
85 |
+
The diarization will be performed in post-processing, if enabled.
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
90 |
+
Audio input. This can be file path or binary type.
|
91 |
+
progress: gr.Progress
|
92 |
+
Indicator to show progress directly in gradio.
|
93 |
+
add_timestamp: bool
|
94 |
+
Whether to add a timestamp at the end of the filename.
|
95 |
+
*whisper_params: tuple
|
96 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
97 |
+
|
98 |
+
Returns
|
99 |
+
----------
|
100 |
+
segments_result: List[dict]
|
101 |
+
list of dicts that includes start, end timestamps and transcribed text
|
102 |
+
elapsed_time: float
|
103 |
+
elapsed time for running
|
104 |
+
"""
|
105 |
+
|
106 |
+
start_time = datetime.now()
|
107 |
+
params = WhisperParameters.as_value(*whisper_params)
|
108 |
+
|
109 |
+
# Get the offload params
|
110 |
+
default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
111 |
+
whisper_params = default_params["whisper"]
|
112 |
+
diarization_params = default_params["diarization"]
|
113 |
+
bool_whisper_enable_offload = whisper_params["enable_offload"]
|
114 |
+
bool_diarization_enable_offload = diarization_params["enable_offload"]
|
115 |
+
|
116 |
+
if params.lang is None:
|
117 |
+
pass
|
118 |
+
elif params.lang == "Automatic Detection":
|
119 |
+
params.lang = None
|
120 |
+
else:
|
121 |
+
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
122 |
+
params.lang = language_code_dict[params.lang]
|
123 |
+
|
124 |
+
if params.is_bgm_separate:
|
125 |
+
music, audio, _ = self.music_separator.separate(
|
126 |
+
audio=audio,
|
127 |
+
model_name=params.uvr_model_size,
|
128 |
+
device=params.uvr_device,
|
129 |
+
segment_size=params.uvr_segment_size,
|
130 |
+
save_file=params.uvr_save_file,
|
131 |
+
progress=progress
|
132 |
+
)
|
133 |
+
|
134 |
+
if audio.ndim >= 2:
|
135 |
+
audio = audio.mean(axis=1)
|
136 |
+
if self.music_separator.audio_info is None:
|
137 |
+
origin_sample_rate = 16000
|
138 |
+
else:
|
139 |
+
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
140 |
+
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
141 |
+
|
142 |
+
if params.uvr_enable_offload:
|
143 |
+
self.music_separator.offload()
|
144 |
+
elapsed_time_bgm_sep = datetime.now() - start_time
|
145 |
+
|
146 |
+
origin_audio = deepcopy(audio)
|
147 |
+
|
148 |
+
if params.vad_filter:
|
149 |
+
# Explicit value set for float('inf') from gr.Number()
|
150 |
+
if params.max_speech_duration_s is None or params.max_speech_duration_s >= 9999:
|
151 |
+
params.max_speech_duration_s = float('inf')
|
152 |
+
|
153 |
+
progress(0, desc="Filtering silent parts from audio...")
|
154 |
+
vad_options = VadOptions(
|
155 |
+
threshold=params.threshold,
|
156 |
+
min_speech_duration_ms=params.min_speech_duration_ms,
|
157 |
+
max_speech_duration_s=params.max_speech_duration_s,
|
158 |
+
min_silence_duration_ms=params.min_silence_duration_ms,
|
159 |
+
speech_pad_ms=params.speech_pad_ms
|
160 |
+
)
|
161 |
+
|
162 |
+
vad_processed, speech_chunks = self.vad.run(
|
163 |
+
audio=audio,
|
164 |
+
vad_parameters=vad_options,
|
165 |
+
progress=progress
|
166 |
+
)
|
167 |
+
|
168 |
+
try:
|
169 |
+
if vad_processed.size > 0 and speech_chunks:
|
170 |
+
if not isinstance(audio, np.ndarray):
|
171 |
+
loaded_audio = faster_whisper.decode_audio(audio, sampling_rate=self.vad.sampling_rate)
|
172 |
+
else:
|
173 |
+
loaded_audio = audio
|
174 |
+
# Convert speech_chunks to Segment objects and convert samples to seconds
|
175 |
+
segments = [Segment(start=chunk['start']/self.vad.sampling_rate, end=chunk['end']/self.vad.sampling_rate) for chunk in speech_chunks]
|
176 |
+
# merged_chunks only works on segments expressed in seconds!!
|
177 |
+
merged_chunks = merge_chunks(segments, chunk_size=300, onset=0.0, offset=None)
|
178 |
+
all_segments = []
|
179 |
+
total_elapsed_time = 0.0
|
180 |
+
for merged in merged_chunks:
|
181 |
+
chunk_start = merged['start']
|
182 |
+
chunk_end = merged['end']
|
183 |
+
|
184 |
+
# To slice audio, convert chunk_start and chunk_end from seconds to samples by mulitplying by sampling rate.
|
185 |
+
start_sample = int(chunk_start*self.vad.sampling_rate)
|
186 |
+
end_sample = int(chunk_end*self.vad.sampling_rate)
|
187 |
+
|
188 |
+
chunk_audio = loaded_audio[start_sample:end_sample]
|
189 |
+
|
190 |
+
chunk_result, chunk_time = self.transcribe(
|
191 |
+
chunk_audio,
|
192 |
+
progress,
|
193 |
+
*astuple(params)
|
194 |
+
)
|
195 |
+
# Offset timestamps
|
196 |
+
for seg in chunk_result:
|
197 |
+
seg['start'] += chunk_start
|
198 |
+
seg['end'] += chunk_start
|
199 |
+
all_segments.extend(chunk_result)
|
200 |
+
total_elapsed_time += chunk_time
|
201 |
+
result = all_segments
|
202 |
+
elapsed_time = total_elapsed_time
|
203 |
+
else:
|
204 |
+
params.vad_filter = False
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Error transcribing file: {e}")
|
207 |
+
|
208 |
+
if not params.vad_filter:
|
209 |
+
result, elapsed_time = self.transcribe(
|
210 |
+
audio,
|
211 |
+
progress,
|
212 |
+
*astuple(params)
|
213 |
+
)
|
214 |
+
if bool_whisper_enable_offload:
|
215 |
+
self.offload()
|
216 |
+
|
217 |
+
if params.is_diarize:
|
218 |
+
progress(0.99, desc="Diarizing speakers...")
|
219 |
+
result, elapsed_time_diarization = self.diarizer.run(
|
220 |
+
audio=origin_audio,
|
221 |
+
use_auth_token=params.hf_token,
|
222 |
+
transcribed_result=result,
|
223 |
+
device=params.diarization_device
|
224 |
+
)
|
225 |
+
if bool_diarization_enable_offload:
|
226 |
+
self.diarizer.offload()
|
227 |
+
|
228 |
+
if not result:
|
229 |
+
print(f"Whisper did not detected any speech segments in the audio.")
|
230 |
+
result = list()
|
231 |
+
|
232 |
+
progress(1.0, desc="Processing done!")
|
233 |
+
total_elapsed_time = datetime.now() - start_time
|
234 |
+
return result, elapsed_time
|
235 |
+
|
236 |
+
def transcribe_file(self,
|
237 |
+
files: Optional[List] = None,
|
238 |
+
input_folder_path: Optional[str] = None,
|
239 |
+
file_format: str = "SRT",
|
240 |
+
add_timestamp: bool = True,
|
241 |
+
translate_output: bool = False,
|
242 |
+
translate_model: str = "",
|
243 |
+
target_lang: str = "",
|
244 |
+
add_timestamp_preview: bool = False,
|
245 |
+
progress=gr.Progress(),
|
246 |
+
*whisper_params,
|
247 |
+
) -> list:
|
248 |
+
"""
|
249 |
+
Write subtitle file from Files
|
250 |
+
|
251 |
+
Parameters
|
252 |
+
----------
|
253 |
+
files: list
|
254 |
+
List of files to transcribe from gr.Files()
|
255 |
+
input_folder_path: str
|
256 |
+
Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
|
257 |
+
this will be used instead.
|
258 |
+
file_format: str
|
259 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
260 |
+
add_timestamp: bool
|
261 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
262 |
+
translate_output: bool
|
263 |
+
Translate output
|
264 |
+
translate_model: str
|
265 |
+
Translation model to use
|
266 |
+
target_lang: str
|
267 |
+
Target language to use
|
268 |
+
add_timestamp_preview: bool
|
269 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp to output preview
|
270 |
+
progress: gr.Progress
|
271 |
+
Indicator to show progress directly in gradio.
|
272 |
+
*whisper_params: tuple
|
273 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
274 |
+
|
275 |
+
Returns
|
276 |
+
----------
|
277 |
+
result_str:
|
278 |
+
Result of transcription to return to gr.Textbox()
|
279 |
+
result_file_path:
|
280 |
+
Output file path to return to gr.Files()
|
281 |
+
"""
|
282 |
+
try:
|
283 |
+
if input_folder_path:
|
284 |
+
files = get_media_files(input_folder_path)
|
285 |
+
if isinstance(files, str):
|
286 |
+
files = [files]
|
287 |
+
if files and isinstance(files[0], gr.utils.NamedString):
|
288 |
+
files = [file.name for file in files]
|
289 |
+
|
290 |
+
## Initialization variables & start time
|
291 |
+
files_info = {}
|
292 |
+
files_to_download = {}
|
293 |
+
time_start = datetime.now()
|
294 |
+
|
295 |
+
## Load parameters related with whisper
|
296 |
+
params = WhisperParameters.as_value(*whisper_params)
|
297 |
+
|
298 |
+
## Load model to detect language
|
299 |
+
model = whisper.load_model("base")
|
300 |
+
|
301 |
+
for file in files:
|
302 |
+
print(file)
|
303 |
+
## Detect language
|
304 |
+
mel = whisper.log_mel_spectrogram(whisper.pad_or_trim(whisper.load_audio(file))).to(model.device)
|
305 |
+
_, probs = model.detect_language(mel)
|
306 |
+
file_language = ""
|
307 |
+
file_lang_probs = ""
|
308 |
+
for key,value in whisper.tokenizer.LANGUAGES.items():
|
309 |
+
if key == str(max(probs, key=probs.get)):
|
310 |
+
file_language = value.capitalize()
|
311 |
+
for key_prob,value_prob in probs.items():
|
312 |
+
if key == key_prob:
|
313 |
+
file_lang_probs = str((round(value_prob*100)))
|
314 |
+
break
|
315 |
+
break
|
316 |
+
transcribed_segments, time_for_task = self.run(
|
317 |
+
file,
|
318 |
+
progress,
|
319 |
+
add_timestamp,
|
320 |
+
*whisper_params,
|
321 |
+
)
|
322 |
+
# Define source language
|
323 |
+
source_lang = file_language
|
324 |
+
|
325 |
+
# Translate to English using Whisper built-in functionality
|
326 |
+
transcription_note = ""
|
327 |
+
if params.is_translate:
|
328 |
+
if source_lang != "English":
|
329 |
+
transcription_note = "To English"
|
330 |
+
source_lang = "English"
|
331 |
+
else:
|
332 |
+
transcription_note = "Already in English"
|
333 |
+
|
334 |
+
# Translate the transcribed segments
|
335 |
+
translation_note = ""
|
336 |
+
if translate_output:
|
337 |
+
if source_lang != target_lang:
|
338 |
+
self.nllb_inf = NLLBInference()
|
339 |
+
if source_lang in NLLB_AVAILABLE_LANGS.keys():
|
340 |
+
transcribed_segments = self.nllb_inf.translate_text(
|
341 |
+
input_list_dict=transcribed_segments,
|
342 |
+
model_size=translate_model,
|
343 |
+
src_lang=source_lang,
|
344 |
+
tgt_lang=target_lang,
|
345 |
+
speaker_diarization=params.is_diarize
|
346 |
+
)
|
347 |
+
translation_note = "To " + target_lang
|
348 |
+
else:
|
349 |
+
translation_note = source_lang + " not supported"
|
350 |
+
else:
|
351 |
+
translation_note = "Already in " + target_lang
|
352 |
+
|
353 |
+
## Get preview
|
354 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
355 |
+
## With or without timestamps
|
356 |
+
if add_timestamp_preview:
|
357 |
+
subtitle = get_txt(transcribed_segments)
|
358 |
+
else:
|
359 |
+
subtitle = get_plaintext(transcribed_segments)
|
360 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "lang": file_language, "lang_prob": file_lang_probs, "input_source_file": (file_name+file_ext), "translation": translation_note, "transcription": transcription_note}
|
361 |
+
|
362 |
+
## Add output file as txt
|
363 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
364 |
+
subtitle, file_path = self.generate_and_write_file(
|
365 |
+
file_name=file_name,
|
366 |
+
transcribed_segments=transcribed_segments,
|
367 |
+
add_timestamp=add_timestamp,
|
368 |
+
file_format="txt",
|
369 |
+
output_dir=self.output_dir
|
370 |
+
)
|
371 |
+
files_to_download[file_name+"_txt"] = {"path": file_path}
|
372 |
+
|
373 |
+
## Add output file as srt
|
374 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
375 |
+
subtitle, file_path = self.generate_and_write_file(
|
376 |
+
file_name=file_name,
|
377 |
+
transcribed_segments=transcribed_segments,
|
378 |
+
add_timestamp=add_timestamp,
|
379 |
+
file_format="srt",
|
380 |
+
output_dir=self.output_dir
|
381 |
+
)
|
382 |
+
files_to_download[file_name+"_srt"] = {"path": file_path}
|
383 |
+
|
384 |
+
## Add output file as csv
|
385 |
+
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
386 |
+
subtitle, file_path = self.generate_and_write_file(
|
387 |
+
file_name=file_name,
|
388 |
+
transcribed_segments=transcribed_segments,
|
389 |
+
add_timestamp=add_timestamp,
|
390 |
+
file_format="csv",
|
391 |
+
output_dir=self.output_dir
|
392 |
+
)
|
393 |
+
files_to_download[file_name+"_csv"] = {"path": file_path}
|
394 |
+
|
395 |
+
total_result = ""
|
396 |
+
total_info = ""
|
397 |
+
total_time = 0
|
398 |
+
for file_name, info in files_info.items():
|
399 |
+
total_result += f'{info["subtitle"]}'
|
400 |
+
|
401 |
+
total_time += info["time_for_task"]
|
402 |
+
total_info += f'Media file:\t{info["input_source_file"]}\nLanguage:\t{info["lang"]} (probability {info["lang_prob"]}%)\n'
|
403 |
+
|
404 |
+
if params.is_translate:
|
405 |
+
total_info += f'Translation:\t{info["transcription"]}\n\t⤷ Handled by OpenAI Whisper\n'
|
406 |
+
|
407 |
+
if translate_output:
|
408 |
+
total_info += f'Translation:\t{info["translation"]}\n\t⤷ Handled by Facebook NLLB\n'
|
409 |
+
|
410 |
+
time_end = datetime.now()
|
411 |
+
total_info += f"\nTotal processing time: {self.format_time((time_end-time_start).total_seconds())}"
|
412 |
+
|
413 |
+
result_str = total_result.rstrip("\n")
|
414 |
+
result_file_path = [info['path'] for info in files_to_download.values()]
|
415 |
+
|
416 |
+
return [result_str,result_file_path,total_info]
|
417 |
+
|
418 |
+
except Exception as e:
|
419 |
+
print(f"Error transcribing file: {e}")
|
420 |
+
finally:
|
421 |
+
self.release_cuda_memory()
|
422 |
+
|
423 |
+
def transcribe_mic(self,
|
424 |
+
mic_audio: str,
|
425 |
+
file_format: str = "SRT",
|
426 |
+
add_timestamp: bool = True,
|
427 |
+
progress=gr.Progress(),
|
428 |
+
*whisper_params,
|
429 |
+
) -> list:
|
430 |
+
"""
|
431 |
+
Write subtitle file from microphone
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
mic_audio: str
|
436 |
+
Audio file path from gr.Microphone()
|
437 |
+
file_format: str
|
438 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
439 |
+
add_timestamp: bool
|
440 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
441 |
+
progress: gr.Progress
|
442 |
+
Indicator to show progress directly in gradio.
|
443 |
+
*whisper_params: tuple
|
444 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
445 |
+
|
446 |
+
Returns
|
447 |
+
----------
|
448 |
+
result_str:
|
449 |
+
Result of transcription to return to gr.Textbox()
|
450 |
+
result_file_path:
|
451 |
+
Output file path to return to gr.Files()
|
452 |
+
"""
|
453 |
+
try:
|
454 |
+
progress(0, desc="Loading Audio...")
|
455 |
+
transcribed_segments, time_for_task = self.run(
|
456 |
+
mic_audio,
|
457 |
+
progress,
|
458 |
+
add_timestamp,
|
459 |
+
*whisper_params,
|
460 |
+
)
|
461 |
+
progress(1, desc="Completed!")
|
462 |
+
|
463 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
464 |
+
file_name="Mic",
|
465 |
+
transcribed_segments=transcribed_segments,
|
466 |
+
add_timestamp=add_timestamp,
|
467 |
+
file_format=file_format,
|
468 |
+
output_dir=self.output_dir
|
469 |
+
)
|
470 |
+
|
471 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
472 |
+
return [result_str, result_file_path]
|
473 |
+
except Exception as e:
|
474 |
+
print(f"Error transcribing file: {e}")
|
475 |
+
finally:
|
476 |
+
self.release_cuda_memory()
|
477 |
+
|
478 |
+
def transcribe_youtube(self,
|
479 |
+
youtube_link: str,
|
480 |
+
file_format: str = "SRT",
|
481 |
+
add_timestamp: bool = True,
|
482 |
+
progress=gr.Progress(),
|
483 |
+
*whisper_params,
|
484 |
+
) -> list:
|
485 |
+
"""
|
486 |
+
Write subtitle file from Youtube
|
487 |
+
|
488 |
+
Parameters
|
489 |
+
----------
|
490 |
+
youtube_link: str
|
491 |
+
URL of the Youtube video to transcribe from gr.Textbox()
|
492 |
+
file_format: str
|
493 |
+
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
494 |
+
add_timestamp: bool
|
495 |
+
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
496 |
+
progress: gr.Progress
|
497 |
+
Indicator to show progress directly in gradio.
|
498 |
+
*whisper_params: tuple
|
499 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
500 |
+
|
501 |
+
Returns
|
502 |
+
----------
|
503 |
+
result_str:
|
504 |
+
Result of transcription to return to gr.Textbox()
|
505 |
+
result_file_path:
|
506 |
+
Output file path to return to gr.Files()
|
507 |
+
"""
|
508 |
+
try:
|
509 |
+
progress(0, desc="Loading Audio from Youtube...")
|
510 |
+
yt = get_ytdata(youtube_link)
|
511 |
+
audio = get_ytaudio(yt)
|
512 |
+
|
513 |
+
transcribed_segments, time_for_task = self.run(
|
514 |
+
audio,
|
515 |
+
progress,
|
516 |
+
add_timestamp,
|
517 |
+
*whisper_params,
|
518 |
+
)
|
519 |
+
|
520 |
+
progress(1, desc="Completed!")
|
521 |
+
|
522 |
+
file_name = safe_filename(yt.title)
|
523 |
+
subtitle, result_file_path = self.generate_and_write_file(
|
524 |
+
file_name=file_name,
|
525 |
+
transcribed_segments=transcribed_segments,
|
526 |
+
add_timestamp=add_timestamp,
|
527 |
+
file_format=file_format,
|
528 |
+
output_dir=self.output_dir
|
529 |
+
)
|
530 |
+
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
531 |
+
|
532 |
+
if os.path.exists(audio):
|
533 |
+
os.remove(audio)
|
534 |
+
|
535 |
+
return [result_str, result_file_path]
|
536 |
+
|
537 |
+
except Exception as e:
|
538 |
+
print(f"Error transcribing file: {e}")
|
539 |
+
finally:
|
540 |
+
self.release_cuda_memory()
|
541 |
+
|
542 |
+
@staticmethod
|
543 |
+
def generate_and_write_file(file_name: str,
|
544 |
+
transcribed_segments: list,
|
545 |
+
add_timestamp: bool,
|
546 |
+
file_format: str,
|
547 |
+
output_dir: str
|
548 |
+
) -> str:
|
549 |
+
"""
|
550 |
+
Writes subtitle file
|
551 |
+
|
552 |
+
Parameters
|
553 |
+
----------
|
554 |
+
file_name: str
|
555 |
+
Output file name
|
556 |
+
transcribed_segments: list
|
557 |
+
Text segments transcribed from audio
|
558 |
+
add_timestamp: bool
|
559 |
+
Determines whether to add a timestamp to the end of the filename.
|
560 |
+
file_format: str
|
561 |
+
File format to write. Supported formats: [SRT, WebVTT, txt, csv]
|
562 |
+
output_dir: str
|
563 |
+
Directory path of the output
|
564 |
+
|
565 |
+
Returns
|
566 |
+
----------
|
567 |
+
content: str
|
568 |
+
Result of the transcription
|
569 |
+
output_path: str
|
570 |
+
output file path
|
571 |
+
"""
|
572 |
+
if add_timestamp:
|
573 |
+
#timestamp = datetime.now().strftime("%m%d%H%M%S")
|
574 |
+
timestamp = datetime.now().strftime("%Y%m%d %H%M%S")
|
575 |
+
output_path = os.path.join(output_dir, f"{file_name} - {timestamp}")
|
576 |
+
else:
|
577 |
+
output_path = os.path.join(output_dir, f"{file_name}")
|
578 |
+
|
579 |
+
file_format = file_format.strip().lower()
|
580 |
+
if file_format == "srt":
|
581 |
+
content = get_srt(transcribed_segments)
|
582 |
+
output_path += '.srt'
|
583 |
+
|
584 |
+
elif file_format == "webvtt":
|
585 |
+
content = get_vtt(transcribed_segments)
|
586 |
+
output_path += '.vtt'
|
587 |
+
|
588 |
+
elif file_format == "txt":
|
589 |
+
content = get_txt(transcribed_segments)
|
590 |
+
output_path += '.txt'
|
591 |
+
|
592 |
+
elif file_format == "csv":
|
593 |
+
content = get_csv(transcribed_segments)
|
594 |
+
output_path += '.csv'
|
595 |
+
|
596 |
+
write_file(content, output_path)
|
597 |
+
return content, output_path
|
598 |
+
|
599 |
+
def offload(self):
|
600 |
+
"""Offload the model and free up the memory"""
|
601 |
+
if self.model is not None:
|
602 |
+
del self.model
|
603 |
+
self.model = None
|
604 |
+
if self.device == "cuda":
|
605 |
+
self.release_cuda_memory()
|
606 |
+
gc.collect()
|
607 |
+
|
608 |
+
@staticmethod
|
609 |
+
def format_time(elapsed_time: float) -> str:
|
610 |
+
"""
|
611 |
+
Get {hours} {minutes} {seconds} time format string
|
612 |
+
|
613 |
+
Parameters
|
614 |
+
----------
|
615 |
+
elapsed_time: str
|
616 |
+
Elapsed time for transcription
|
617 |
+
|
618 |
+
Returns
|
619 |
+
----------
|
620 |
+
Time format string
|
621 |
+
"""
|
622 |
+
hours, rem = divmod(elapsed_time, 3600)
|
623 |
+
minutes, seconds = divmod(rem, 60)
|
624 |
+
|
625 |
+
time_str = ""
|
626 |
+
|
627 |
+
hours = round(hours)
|
628 |
+
if hours:
|
629 |
+
if hours == 1:
|
630 |
+
time_str += f"{hours} hour "
|
631 |
+
else:
|
632 |
+
time_str += f"{hours} hours "
|
633 |
+
|
634 |
+
minutes = round(minutes)
|
635 |
+
if minutes:
|
636 |
+
if minutes == 1:
|
637 |
+
time_str += f"{minutes} minute "
|
638 |
+
else:
|
639 |
+
time_str += f"{minutes} minutes "
|
640 |
+
|
641 |
+
seconds = round(seconds)
|
642 |
+
if seconds == 1:
|
643 |
+
time_str += f"{seconds} second"
|
644 |
+
else:
|
645 |
+
time_str += f"{seconds} seconds"
|
646 |
+
|
647 |
+
return time_str.strip()
|
648 |
+
|
649 |
+
@staticmethod
|
650 |
+
def get_device():
|
651 |
+
if torch.cuda.is_available():
|
652 |
+
return "cuda"
|
653 |
+
elif torch.backends.mps.is_available():
|
654 |
+
if not WhisperBase.is_sparse_api_supported():
|
655 |
+
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
|
656 |
+
return "cpu"
|
657 |
+
return "mps"
|
658 |
+
else:
|
659 |
+
return "cpu"
|
660 |
+
|
661 |
+
@staticmethod
|
662 |
+
def is_sparse_api_supported():
|
663 |
+
if not torch.backends.mps.is_available():
|
664 |
+
return False
|
665 |
+
|
666 |
+
try:
|
667 |
+
device = torch.device("mps")
|
668 |
+
sparse_tensor = torch.sparse_coo_tensor(
|
669 |
+
indices=torch.tensor([[0, 1], [2, 3]]),
|
670 |
+
values=torch.tensor([1, 2]),
|
671 |
+
size=(4, 4),
|
672 |
+
device=device
|
673 |
+
)
|
674 |
+
return True
|
675 |
+
except RuntimeError:
|
676 |
+
return False
|
677 |
+
|
678 |
+
@staticmethod
|
679 |
+
def release_cuda_memory():
|
680 |
+
"""Release memory"""
|
681 |
+
if torch.cuda.is_available():
|
682 |
+
torch.cuda.empty_cache()
|
683 |
+
torch.cuda.reset_max_memory_allocated()
|
684 |
+
|
685 |
+
@staticmethod
|
686 |
+
def remove_input_files(file_paths: List[str]):
|
687 |
+
"""Remove gradio cached files"""
|
688 |
+
if not file_paths:
|
689 |
+
return
|
690 |
+
|
691 |
+
for file_path in file_paths:
|
692 |
+
if file_path and os.path.exists(file_path):
|
693 |
+
os.remove(file_path)
|
694 |
+
|
695 |
+
@staticmethod
|
696 |
+
def cache_parameters(
|
697 |
+
params: WhisperValues,
|
698 |
+
file_format: str = "SRT",
|
699 |
+
add_timestamp: bool = True
|
700 |
+
):
|
701 |
+
"""Cache parameters to the yaml file"""
|
702 |
+
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
703 |
+
param_to_cache = params.to_dict()
|
704 |
+
|
705 |
+
cached_yaml = {**cached_params, **param_to_cache}
|
706 |
+
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
707 |
+
cached_yaml["whisper"]["file_format"] = file_format
|
708 |
+
|
709 |
+
suppress_token = cached_yaml["whisper"].get("suppress_tokens", None)
|
710 |
+
if suppress_token and isinstance(suppress_token, list):
|
711 |
+
cached_yaml["whisper"]["suppress_tokens"] = str(suppress_token)
|
712 |
+
|
713 |
+
if cached_yaml["whisper"].get("lang", None) is None:
|
714 |
+
cached_yaml["whisper"]["lang"] = AUTOMATIC_DETECTION.unwrap()
|
715 |
+
else:
|
716 |
+
language_dict = whisper.tokenizer.LANGUAGES
|
717 |
+
cached_yaml["whisper"]["lang"] = language_dict[cached_yaml["whisper"]["lang"]]
|
718 |
+
|
719 |
+
if cached_yaml["vad"].get("max_speech_duration_s", float('inf')) == float('inf'):
|
720 |
+
cached_yaml["vad"]["max_speech_duration_s"] = GRADIO_NONE_NUMBER_MAX
|
721 |
+
|
722 |
+
if cached_yaml is not None and cached_yaml:
|
723 |
+
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
724 |
+
|
725 |
+
@staticmethod
|
726 |
+
def resample_audio(audio: Union[str, np.ndarray],
|
727 |
+
new_sample_rate: int = 16000,
|
728 |
+
original_sample_rate: Optional[int] = None,) -> np.ndarray:
|
729 |
+
"""Resamples audio to 16k sample rate, standard on Whisper model"""
|
730 |
+
if isinstance(audio, str):
|
731 |
+
audio, original_sample_rate = torchaudio.load(audio)
|
732 |
+
else:
|
733 |
+
if original_sample_rate is None:
|
734 |
+
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
|
735 |
+
audio = torch.from_numpy(audio)
|
736 |
+
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
|
737 |
+
resampled_audio = resampler(audio).numpy()
|
738 |
+
return resampled_audio
|