Delete modules/whisper/whisper_base.py
Browse files- modules/whisper/whisper_base.py +0 -542
modules/whisper/whisper_base.py
DELETED
@@ -1,542 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import whisper
|
4 |
-
import gradio as gr
|
5 |
-
import torchaudio
|
6 |
-
from abc import ABC, abstractmethod
|
7 |
-
from typing import BinaryIO, Union, Tuple, List
|
8 |
-
import numpy as np
|
9 |
-
from datetime import datetime
|
10 |
-
from faster_whisper.vad import VadOptions
|
11 |
-
from dataclasses import astuple
|
12 |
-
|
13 |
-
from modules.uvr.music_separator import MusicSeparator
|
14 |
-
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
|
15 |
-
UVR_MODELS_DIR)
|
16 |
-
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
17 |
-
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
|
18 |
-
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
|
19 |
-
from modules.whisper.whisper_parameter import *
|
20 |
-
from modules.diarize.diarizer import Diarizer
|
21 |
-
from modules.vad.silero_vad import SileroVAD
|
22 |
-
|
23 |
-
|
24 |
-
class WhisperBase(ABC):
|
25 |
-
def __init__(self,
|
26 |
-
model_dir: str = WHISPER_MODELS_DIR,
|
27 |
-
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
|
28 |
-
uvr_model_dir: str = UVR_MODELS_DIR,
|
29 |
-
output_dir: str = OUTPUT_DIR,
|
30 |
-
):
|
31 |
-
self.model_dir = model_dir
|
32 |
-
self.output_dir = output_dir
|
33 |
-
os.makedirs(self.output_dir, exist_ok=True)
|
34 |
-
os.makedirs(self.model_dir, exist_ok=True)
|
35 |
-
self.diarizer = Diarizer(
|
36 |
-
model_dir=diarization_model_dir
|
37 |
-
)
|
38 |
-
self.vad = SileroVAD()
|
39 |
-
self.music_separator = MusicSeparator(
|
40 |
-
model_dir=uvr_model_dir,
|
41 |
-
output_dir=os.path.join(output_dir, "UVR")
|
42 |
-
)
|
43 |
-
|
44 |
-
self.model = None
|
45 |
-
self.current_model_size = None
|
46 |
-
self.available_models = whisper.available_models()
|
47 |
-
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
48 |
-
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
49 |
-
self.device = self.get_device()
|
50 |
-
self.available_compute_types = ["float16", "float32"]
|
51 |
-
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
52 |
-
|
53 |
-
@abstractmethod
|
54 |
-
def transcribe(self,
|
55 |
-
audio: Union[str, BinaryIO, np.ndarray],
|
56 |
-
progress: gr.Progress = gr.Progress(),
|
57 |
-
*whisper_params,
|
58 |
-
):
|
59 |
-
"""Inference whisper model to transcribe"""
|
60 |
-
pass
|
61 |
-
|
62 |
-
@abstractmethod
|
63 |
-
def update_model(self,
|
64 |
-
model_size: str,
|
65 |
-
compute_type: str,
|
66 |
-
progress: gr.Progress = gr.Progress()
|
67 |
-
):
|
68 |
-
"""Initialize whisper model"""
|
69 |
-
pass
|
70 |
-
|
71 |
-
def run(self,
|
72 |
-
audio: Union[str, BinaryIO, np.ndarray],
|
73 |
-
progress: gr.Progress = gr.Progress(),
|
74 |
-
add_timestamp: bool = True,
|
75 |
-
*whisper_params,
|
76 |
-
) -> Tuple[List[dict], float]:
|
77 |
-
"""
|
78 |
-
Run transcription with conditional pre-processing and post-processing.
|
79 |
-
The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
|
80 |
-
The diarization will be performed in post-processing, if enabled.
|
81 |
-
|
82 |
-
Parameters
|
83 |
-
----------
|
84 |
-
audio: Union[str, BinaryIO, np.ndarray]
|
85 |
-
Audio input. This can be file path or binary type.
|
86 |
-
progress: gr.Progress
|
87 |
-
Indicator to show progress directly in gradio.
|
88 |
-
add_timestamp: bool
|
89 |
-
Whether to add a timestamp at the end of the filename.
|
90 |
-
*whisper_params: tuple
|
91 |
-
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
92 |
-
|
93 |
-
Returns
|
94 |
-
----------
|
95 |
-
segments_result: List[dict]
|
96 |
-
list of dicts that includes start, end timestamps and transcribed text
|
97 |
-
elapsed_time: float
|
98 |
-
elapsed time for running
|
99 |
-
"""
|
100 |
-
params = WhisperParameters.as_value(*whisper_params)
|
101 |
-
|
102 |
-
self.cache_parameters(
|
103 |
-
whisper_params=params,
|
104 |
-
add_timestamp=add_timestamp
|
105 |
-
)
|
106 |
-
|
107 |
-
if params.lang is None:
|
108 |
-
pass
|
109 |
-
elif params.lang == "Automatic Detection":
|
110 |
-
params.lang = None
|
111 |
-
else:
|
112 |
-
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
113 |
-
params.lang = language_code_dict[params.lang]
|
114 |
-
|
115 |
-
if params.is_bgm_separate:
|
116 |
-
music, audio, _ = self.music_separator.separate(
|
117 |
-
audio=audio,
|
118 |
-
model_name=params.uvr_model_size,
|
119 |
-
device=params.uvr_device,
|
120 |
-
segment_size=params.uvr_segment_size,
|
121 |
-
save_file=params.uvr_save_file,
|
122 |
-
progress=progress
|
123 |
-
)
|
124 |
-
|
125 |
-
if audio.ndim >= 2:
|
126 |
-
audio = audio.mean(axis=1)
|
127 |
-
if self.music_separator.audio_info is None:
|
128 |
-
origin_sample_rate = 16000
|
129 |
-
else:
|
130 |
-
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
131 |
-
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
132 |
-
|
133 |
-
if params.uvr_enable_offload:
|
134 |
-
self.music_separator.offload()
|
135 |
-
|
136 |
-
if params.vad_filter:
|
137 |
-
# Explicit value set for float('inf') from gr.Number()
|
138 |
-
if params.max_speech_duration_s is None or params.max_speech_duration_s >= 9999:
|
139 |
-
params.max_speech_duration_s = float('inf')
|
140 |
-
|
141 |
-
vad_options = VadOptions(
|
142 |
-
threshold=params.threshold,
|
143 |
-
min_speech_duration_ms=params.min_speech_duration_ms,
|
144 |
-
max_speech_duration_s=params.max_speech_duration_s,
|
145 |
-
min_silence_duration_ms=params.min_silence_duration_ms,
|
146 |
-
speech_pad_ms=params.speech_pad_ms
|
147 |
-
)
|
148 |
-
|
149 |
-
audio, speech_chunks = self.vad.run(
|
150 |
-
audio=audio,
|
151 |
-
vad_parameters=vad_options,
|
152 |
-
progress=progress
|
153 |
-
)
|
154 |
-
|
155 |
-
result, elapsed_time = self.transcribe(
|
156 |
-
audio,
|
157 |
-
progress,
|
158 |
-
*astuple(params)
|
159 |
-
)
|
160 |
-
|
161 |
-
if params.vad_filter:
|
162 |
-
result = self.vad.restore_speech_timestamps(
|
163 |
-
segments=result,
|
164 |
-
speech_chunks=speech_chunks,
|
165 |
-
)
|
166 |
-
|
167 |
-
if params.is_diarize:
|
168 |
-
result, elapsed_time_diarization = self.diarizer.run(
|
169 |
-
audio=audio,
|
170 |
-
use_auth_token=params.hf_token,
|
171 |
-
transcribed_result=result,
|
172 |
-
)
|
173 |
-
elapsed_time += elapsed_time_diarization
|
174 |
-
return result, elapsed_time
|
175 |
-
|
176 |
-
def transcribe_file(self,
|
177 |
-
files: Optional[List] = None,
|
178 |
-
input_folder_path: Optional[str] = None,
|
179 |
-
file_format: str = "SRT",
|
180 |
-
add_timestamp: bool = True,
|
181 |
-
progress=gr.Progress(),
|
182 |
-
*whisper_params,
|
183 |
-
) -> list:
|
184 |
-
"""
|
185 |
-
Write subtitle file from Files
|
186 |
-
|
187 |
-
Parameters
|
188 |
-
----------
|
189 |
-
files: list
|
190 |
-
List of files to transcribe from gr.Files()
|
191 |
-
input_folder_path: str
|
192 |
-
Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
|
193 |
-
this will be used instead.
|
194 |
-
file_format: str
|
195 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
196 |
-
add_timestamp: bool
|
197 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
198 |
-
progress: gr.Progress
|
199 |
-
Indicator to show progress directly in gradio.
|
200 |
-
*whisper_params: tuple
|
201 |
-
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
202 |
-
|
203 |
-
Returns
|
204 |
-
----------
|
205 |
-
result_str:
|
206 |
-
Result of transcription to return to gr.Textbox()
|
207 |
-
result_file_path:
|
208 |
-
Output file path to return to gr.Files()
|
209 |
-
"""
|
210 |
-
try:
|
211 |
-
if input_folder_path:
|
212 |
-
files = get_media_files(input_folder_path)
|
213 |
-
if isinstance(files, str):
|
214 |
-
files = [files]
|
215 |
-
if files and isinstance(files[0], gr.utils.NamedString):
|
216 |
-
files = [file.name for file in files]
|
217 |
-
|
218 |
-
files_info = {}
|
219 |
-
for file in files:
|
220 |
-
|
221 |
-
## Detect language
|
222 |
-
#model = whisper.load_model("base")
|
223 |
-
params = WhisperParameters.as_value(*whisper_params)
|
224 |
-
model = whisper.load_model(params.model_size)
|
225 |
-
mel = whisper.log_mel_spectrogram(whisper.pad_or_trim(whisper.load_audio(file))).to(model.device)
|
226 |
-
_, probs = model.detect_language(mel)
|
227 |
-
file_language = "not"
|
228 |
-
for key,value in whisper.tokenizer.LANGUAGES.items():
|
229 |
-
if key == str(max(probs, key=probs.get)):
|
230 |
-
file_language = value.capitalize()
|
231 |
-
break
|
232 |
-
|
233 |
-
transcribed_segments, time_for_task = self.run(
|
234 |
-
file,
|
235 |
-
progress,
|
236 |
-
add_timestamp,
|
237 |
-
*whisper_params,
|
238 |
-
)
|
239 |
-
|
240 |
-
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
241 |
-
subtitle, file_path = self.generate_and_write_file(
|
242 |
-
file_name=file_name,
|
243 |
-
transcribed_segments=transcribed_segments,
|
244 |
-
add_timestamp=add_timestamp,
|
245 |
-
file_format=file_format,
|
246 |
-
output_dir=self.output_dir
|
247 |
-
)
|
248 |
-
|
249 |
-
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path, "lang": file_language}
|
250 |
-
|
251 |
-
total_result = ''
|
252 |
-
total_info = ''
|
253 |
-
total_time = 0
|
254 |
-
for file_name, info in files_info.items():
|
255 |
-
total_result += f'{info["subtitle"]}'
|
256 |
-
total_time += info["time_for_task"]
|
257 |
-
#total_info += f'{info["lang"]}'
|
258 |
-
total_info += f"Language {info['lang']} detected for file '{file_name}{file_ext}'"
|
259 |
-
|
260 |
-
#result_str = f"Processing of file '{file_name}{file_ext}' done in {self.format_time(total_time)}:\n\n{total_result}"
|
261 |
-
total_info += f"\nTranscription process done in {self.format_time(total_time)}"
|
262 |
-
result_str = total_result
|
263 |
-
result_file_path = [info['path'] for info in files_info.values()]
|
264 |
-
|
265 |
-
return [result_str, result_file_path, total_info]
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
print(f"Error transcribing file: {e}")
|
269 |
-
finally:
|
270 |
-
self.release_cuda_memory()
|
271 |
-
|
272 |
-
def transcribe_mic(self,
|
273 |
-
mic_audio: str,
|
274 |
-
file_format: str = "SRT",
|
275 |
-
add_timestamp: bool = True,
|
276 |
-
progress=gr.Progress(),
|
277 |
-
*whisper_params,
|
278 |
-
) -> list:
|
279 |
-
"""
|
280 |
-
Write subtitle file from microphone
|
281 |
-
|
282 |
-
Parameters
|
283 |
-
----------
|
284 |
-
mic_audio: str
|
285 |
-
Audio file path from gr.Microphone()
|
286 |
-
file_format: str
|
287 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
288 |
-
add_timestamp: bool
|
289 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
290 |
-
progress: gr.Progress
|
291 |
-
Indicator to show progress directly in gradio.
|
292 |
-
*whisper_params: tuple
|
293 |
-
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
294 |
-
|
295 |
-
Returns
|
296 |
-
----------
|
297 |
-
result_str:
|
298 |
-
Result of transcription to return to gr.Textbox()
|
299 |
-
result_file_path:
|
300 |
-
Output file path to return to gr.Files()
|
301 |
-
"""
|
302 |
-
try:
|
303 |
-
progress(0, desc="Loading Audio..")
|
304 |
-
transcribed_segments, time_for_task = self.run(
|
305 |
-
mic_audio,
|
306 |
-
progress,
|
307 |
-
add_timestamp,
|
308 |
-
*whisper_params,
|
309 |
-
)
|
310 |
-
progress(1, desc="Completed!")
|
311 |
-
|
312 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
313 |
-
file_name="Mic",
|
314 |
-
transcribed_segments=transcribed_segments,
|
315 |
-
add_timestamp=add_timestamp,
|
316 |
-
file_format=file_format,
|
317 |
-
output_dir=self.output_dir
|
318 |
-
)
|
319 |
-
|
320 |
-
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
321 |
-
return [result_str, result_file_path]
|
322 |
-
except Exception as e:
|
323 |
-
print(f"Error transcribing file: {e}")
|
324 |
-
finally:
|
325 |
-
self.release_cuda_memory()
|
326 |
-
|
327 |
-
def transcribe_youtube(self,
|
328 |
-
youtube_link: str,
|
329 |
-
file_format: str = "SRT",
|
330 |
-
add_timestamp: bool = True,
|
331 |
-
progress=gr.Progress(),
|
332 |
-
*whisper_params,
|
333 |
-
) -> list:
|
334 |
-
"""
|
335 |
-
Write subtitle file from Youtube
|
336 |
-
|
337 |
-
Parameters
|
338 |
-
----------
|
339 |
-
youtube_link: str
|
340 |
-
URL of the Youtube video to transcribe from gr.Textbox()
|
341 |
-
file_format: str
|
342 |
-
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
343 |
-
add_timestamp: bool
|
344 |
-
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
|
345 |
-
progress: gr.Progress
|
346 |
-
Indicator to show progress directly in gradio.
|
347 |
-
*whisper_params: tuple
|
348 |
-
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
349 |
-
|
350 |
-
Returns
|
351 |
-
----------
|
352 |
-
result_str:
|
353 |
-
Result of transcription to return to gr.Textbox()
|
354 |
-
result_file_path:
|
355 |
-
Output file path to return to gr.Files()
|
356 |
-
"""
|
357 |
-
try:
|
358 |
-
progress(0, desc="Loading Audio from Youtube..")
|
359 |
-
yt = get_ytdata(youtube_link)
|
360 |
-
audio = get_ytaudio(yt)
|
361 |
-
|
362 |
-
transcribed_segments, time_for_task = self.run(
|
363 |
-
audio,
|
364 |
-
progress,
|
365 |
-
add_timestamp,
|
366 |
-
*whisper_params,
|
367 |
-
)
|
368 |
-
|
369 |
-
progress(1, desc="Completed!")
|
370 |
-
|
371 |
-
file_name = safe_filename(yt.title)
|
372 |
-
subtitle, result_file_path = self.generate_and_write_file(
|
373 |
-
file_name=file_name,
|
374 |
-
transcribed_segments=transcribed_segments,
|
375 |
-
add_timestamp=add_timestamp,
|
376 |
-
file_format=file_format,
|
377 |
-
output_dir=self.output_dir
|
378 |
-
)
|
379 |
-
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
380 |
-
|
381 |
-
if os.path.exists(audio):
|
382 |
-
os.remove(audio)
|
383 |
-
|
384 |
-
return [result_str, result_file_path]
|
385 |
-
|
386 |
-
except Exception as e:
|
387 |
-
print(f"Error transcribing file: {e}")
|
388 |
-
finally:
|
389 |
-
self.release_cuda_memory()
|
390 |
-
|
391 |
-
@staticmethod
|
392 |
-
def generate_and_write_file(file_name: str,
|
393 |
-
transcribed_segments: list,
|
394 |
-
add_timestamp: bool,
|
395 |
-
file_format: str,
|
396 |
-
output_dir: str
|
397 |
-
) -> str:
|
398 |
-
"""
|
399 |
-
Writes subtitle file
|
400 |
-
|
401 |
-
Parameters
|
402 |
-
----------
|
403 |
-
file_name: str
|
404 |
-
Output file name
|
405 |
-
transcribed_segments: list
|
406 |
-
Text segments transcribed from audio
|
407 |
-
add_timestamp: bool
|
408 |
-
Determines whether to add a timestamp to the end of the filename.
|
409 |
-
file_format: str
|
410 |
-
File format to write. Supported formats: [SRT, WebVTT, txt]
|
411 |
-
output_dir: str
|
412 |
-
Directory path of the output
|
413 |
-
|
414 |
-
Returns
|
415 |
-
----------
|
416 |
-
content: str
|
417 |
-
Result of the transcription
|
418 |
-
output_path: str
|
419 |
-
output file path
|
420 |
-
"""
|
421 |
-
if add_timestamp:
|
422 |
-
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
423 |
-
output_path = os.path.join(output_dir, f"{file_name} - {timestamp}")
|
424 |
-
else:
|
425 |
-
output_path = os.path.join(output_dir, f"{file_name}")
|
426 |
-
|
427 |
-
file_format = file_format.strip().lower()
|
428 |
-
if file_format == "srt":
|
429 |
-
content = get_srt(transcribed_segments)
|
430 |
-
output_path += '.srt'
|
431 |
-
|
432 |
-
elif file_format == "webvtt":
|
433 |
-
content = get_vtt(transcribed_segments)
|
434 |
-
output_path += '.vtt'
|
435 |
-
|
436 |
-
elif file_format == "txt":
|
437 |
-
content = get_txt(transcribed_segments)
|
438 |
-
output_path += '.txt'
|
439 |
-
|
440 |
-
write_file(content, output_path)
|
441 |
-
return content, output_path
|
442 |
-
|
443 |
-
@staticmethod
|
444 |
-
def format_time(elapsed_time: float) -> str:
|
445 |
-
"""
|
446 |
-
Get {hours} {minutes} {seconds} time format string
|
447 |
-
|
448 |
-
Parameters
|
449 |
-
----------
|
450 |
-
elapsed_time: str
|
451 |
-
Elapsed time for transcription
|
452 |
-
|
453 |
-
Returns
|
454 |
-
----------
|
455 |
-
Time format string
|
456 |
-
"""
|
457 |
-
hours, rem = divmod(elapsed_time, 3600)
|
458 |
-
minutes, seconds = divmod(rem, 60)
|
459 |
-
|
460 |
-
time_str = ""
|
461 |
-
if hours:
|
462 |
-
time_str += f"{hours} hours "
|
463 |
-
if minutes:
|
464 |
-
time_str += f"{minutes} minutes "
|
465 |
-
seconds = round(seconds)
|
466 |
-
time_str += f"{seconds} seconds"
|
467 |
-
|
468 |
-
return time_str.strip()
|
469 |
-
|
470 |
-
@staticmethod
|
471 |
-
def get_device():
|
472 |
-
if torch.cuda.is_available():
|
473 |
-
return "cuda"
|
474 |
-
elif torch.backends.mps.is_available():
|
475 |
-
if not WhisperBase.is_sparse_api_supported():
|
476 |
-
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
|
477 |
-
return "cpu"
|
478 |
-
return "mps"
|
479 |
-
else:
|
480 |
-
return "cpu"
|
481 |
-
|
482 |
-
@staticmethod
|
483 |
-
def is_sparse_api_supported():
|
484 |
-
if not torch.backends.mps.is_available():
|
485 |
-
return False
|
486 |
-
|
487 |
-
try:
|
488 |
-
device = torch.device("mps")
|
489 |
-
sparse_tensor = torch.sparse_coo_tensor(
|
490 |
-
indices=torch.tensor([[0, 1], [2, 3]]),
|
491 |
-
values=torch.tensor([1, 2]),
|
492 |
-
size=(4, 4),
|
493 |
-
device=device
|
494 |
-
)
|
495 |
-
return True
|
496 |
-
except RuntimeError:
|
497 |
-
return False
|
498 |
-
|
499 |
-
@staticmethod
|
500 |
-
def release_cuda_memory():
|
501 |
-
"""Release memory"""
|
502 |
-
if torch.cuda.is_available():
|
503 |
-
torch.cuda.empty_cache()
|
504 |
-
torch.cuda.reset_max_memory_allocated()
|
505 |
-
|
506 |
-
@staticmethod
|
507 |
-
def remove_input_files(file_paths: List[str]):
|
508 |
-
"""Remove gradio cached files"""
|
509 |
-
if not file_paths:
|
510 |
-
return
|
511 |
-
|
512 |
-
for file_path in file_paths:
|
513 |
-
if file_path and os.path.exists(file_path):
|
514 |
-
os.remove(file_path)
|
515 |
-
|
516 |
-
@staticmethod
|
517 |
-
def cache_parameters(
|
518 |
-
whisper_params: WhisperValues,
|
519 |
-
add_timestamp: bool
|
520 |
-
):
|
521 |
-
"""cache parameters to the yaml file"""
|
522 |
-
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
523 |
-
cached_whisper_param = whisper_params.to_yaml()
|
524 |
-
cached_yaml = {**cached_params, **cached_whisper_param}
|
525 |
-
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
526 |
-
|
527 |
-
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
528 |
-
|
529 |
-
@staticmethod
|
530 |
-
def resample_audio(audio: Union[str, np.ndarray],
|
531 |
-
new_sample_rate: int = 16000,
|
532 |
-
original_sample_rate: Optional[int] = None,) -> np.ndarray:
|
533 |
-
"""Resamples audio to 16k sample rate, standard on Whisper model"""
|
534 |
-
if isinstance(audio, str):
|
535 |
-
audio, original_sample_rate = torchaudio.load(audio)
|
536 |
-
else:
|
537 |
-
if original_sample_rate is None:
|
538 |
-
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
|
539 |
-
audio = torch.from_numpy(audio)
|
540 |
-
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
|
541 |
-
resampled_audio = resampler(audio).numpy()
|
542 |
-
return resampled_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|