Delete modules/uvr/music_separator_old.py
Browse files
modules/uvr/music_separator_old.py
DELETED
@@ -1,183 +0,0 @@
|
|
1 |
-
from typing import Optional, Union, List, Dict
|
2 |
-
import numpy as np
|
3 |
-
import torchaudio
|
4 |
-
import soundfile as sf
|
5 |
-
import os
|
6 |
-
import torch
|
7 |
-
import gc
|
8 |
-
import gradio as gr
|
9 |
-
from datetime import datetime
|
10 |
-
|
11 |
-
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
12 |
-
from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH
|
13 |
-
from modules.utils.files_manager import load_yaml, save_yaml, is_video
|
14 |
-
from modules.diarize.audio_loader import load_audio
|
15 |
-
|
16 |
-
class MusicSeparator:
|
17 |
-
def __init__(self,
|
18 |
-
model_dir: Optional[str] = None,
|
19 |
-
output_dir: Optional[str] = None):
|
20 |
-
self.model = None
|
21 |
-
self.device = self.get_device()
|
22 |
-
self.available_devices = ["cpu", "cuda"]
|
23 |
-
self.model_dir = model_dir
|
24 |
-
self.output_dir = output_dir
|
25 |
-
instrumental_output_dir = os.path.join(self.output_dir, "instrumental")
|
26 |
-
vocals_output_dir = os.path.join(self.output_dir, "vocals")
|
27 |
-
os.makedirs(instrumental_output_dir, exist_ok=True)
|
28 |
-
os.makedirs(vocals_output_dir, exist_ok=True)
|
29 |
-
self.audio_info = None
|
30 |
-
self.available_models = ["UVR-MDX-NET-Inst_HQ_4", "UVR-MDX-NET-Inst_3"]
|
31 |
-
self.default_model = self.available_models[0]
|
32 |
-
self.current_model_size = self.default_model
|
33 |
-
self.model_config = {
|
34 |
-
"segment": 256,
|
35 |
-
"split": True
|
36 |
-
}
|
37 |
-
|
38 |
-
def update_model(self,
|
39 |
-
model_name: str = "UVR-MDX-NET-Inst_1",
|
40 |
-
device: Optional[str] = None,
|
41 |
-
segment_size: int = 256):
|
42 |
-
"""
|
43 |
-
Update model with the given model name
|
44 |
-
|
45 |
-
Args:
|
46 |
-
model_name (str): Model name.
|
47 |
-
device (str): Device to use for the model.
|
48 |
-
segment_size (int): Segment size for the prediction.
|
49 |
-
"""
|
50 |
-
if device is None:
|
51 |
-
device = self.device
|
52 |
-
|
53 |
-
self.device = device
|
54 |
-
self.model_config = {
|
55 |
-
"segment": segment_size,
|
56 |
-
"split": True
|
57 |
-
}
|
58 |
-
self.model = MDX(name=model_name,
|
59 |
-
other_metadata=self.model_config,
|
60 |
-
device=self.device,
|
61 |
-
logger=None,
|
62 |
-
model_dir=self.model_dir)
|
63 |
-
|
64 |
-
def separate(self,
|
65 |
-
audio: Union[str, np.ndarray],
|
66 |
-
model_name: str,
|
67 |
-
device: Optional[str] = None,
|
68 |
-
segment_size: int = 256,
|
69 |
-
save_file: bool = False,
|
70 |
-
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]:
|
71 |
-
"""
|
72 |
-
Separate the background music from the audio.
|
73 |
-
|
74 |
-
Args:
|
75 |
-
audio (Union[str, np.ndarray]): Audio path or numpy array.
|
76 |
-
model_name (str): Model name.
|
77 |
-
device (str): Device to use for the model.
|
78 |
-
segment_size (int): Segment size for the prediction.
|
79 |
-
save_file (bool): Whether to save the separated audio to output path or not.
|
80 |
-
progress (gr.Progress): Gradio progress indicator.
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
A Tuple of
|
84 |
-
np.ndarray: Instrumental numpy arrays.
|
85 |
-
np.ndarray: Vocals numpy arrays.
|
86 |
-
file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False.
|
87 |
-
"""
|
88 |
-
if isinstance(audio, str):
|
89 |
-
output_filename, ext = os.path.basename(audio), ".wav"
|
90 |
-
output_filename, orig_ext = os.path.splitext(output_filename)
|
91 |
-
|
92 |
-
if is_video(audio):
|
93 |
-
audio = load_audio(audio)
|
94 |
-
sample_rate = 16000
|
95 |
-
else:
|
96 |
-
self.audio_info = torchaudio.info(audio)
|
97 |
-
sample_rate = self.audio_info.sample_rate
|
98 |
-
else:
|
99 |
-
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
100 |
-
output_filename, ext = f"UVR-{timestamp}", ".wav"
|
101 |
-
sample_rate = 16000
|
102 |
-
|
103 |
-
model_config = {
|
104 |
-
"segment": segment_size,
|
105 |
-
"split": True
|
106 |
-
}
|
107 |
-
|
108 |
-
if (self.model is None or
|
109 |
-
self.current_model_size != model_name or
|
110 |
-
self.model_config != model_config or
|
111 |
-
self.model.sample_rate != sample_rate or
|
112 |
-
self.device != device):
|
113 |
-
progress(0, desc="Initializing UVR Model...")
|
114 |
-
self.update_model(
|
115 |
-
model_name=model_name,
|
116 |
-
device=device,
|
117 |
-
segment_size=segment_size
|
118 |
-
)
|
119 |
-
self.model.sample_rate = sample_rate
|
120 |
-
|
121 |
-
progress(0, desc="Separating background music from the audio...")
|
122 |
-
result = self.model(audio)
|
123 |
-
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
124 |
-
|
125 |
-
file_paths = []
|
126 |
-
if save_file:
|
127 |
-
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
128 |
-
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
129 |
-
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
130 |
-
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
131 |
-
file_paths += [instrumental_output_path, vocals_output_path]
|
132 |
-
|
133 |
-
return instrumental, vocals, file_paths
|
134 |
-
|
135 |
-
def separate_files(self,
|
136 |
-
files: List,
|
137 |
-
model_name: str,
|
138 |
-
device: Optional[str] = None,
|
139 |
-
segment_size: int = 256,
|
140 |
-
save_file: bool = True,
|
141 |
-
progress: gr.Progress = gr.Progress()) -> List[str]:
|
142 |
-
"""Separate the background music from the audio files. Returns only last Instrumental and vocals file paths
|
143 |
-
to display into gr.Audio()"""
|
144 |
-
self.cache_parameters(model_size=model_name, segment_size=segment_size)
|
145 |
-
|
146 |
-
for file_path in files:
|
147 |
-
instrumental, vocals, file_paths = self.separate(
|
148 |
-
audio=file_path,
|
149 |
-
model_name=model_name,
|
150 |
-
device=device,
|
151 |
-
segment_size=segment_size,
|
152 |
-
save_file=save_file,
|
153 |
-
progress=progress
|
154 |
-
)
|
155 |
-
return file_paths
|
156 |
-
|
157 |
-
@staticmethod
|
158 |
-
def get_device():
|
159 |
-
"""Get device for the model"""
|
160 |
-
return "cuda" if torch.cuda.is_available() else "cpu"
|
161 |
-
|
162 |
-
def offload(self):
|
163 |
-
"""Offload the model and free up the memory"""
|
164 |
-
if self.model is not None:
|
165 |
-
del self.model
|
166 |
-
self.model = None
|
167 |
-
if self.device == "cuda":
|
168 |
-
torch.cuda.empty_cache()
|
169 |
-
gc.collect()
|
170 |
-
self.audio_info = None
|
171 |
-
|
172 |
-
@staticmethod
|
173 |
-
def cache_parameters(model_size: str,
|
174 |
-
segment_size: int):
|
175 |
-
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
176 |
-
cached_uvr_params = cached_params["bgm_separation"]
|
177 |
-
uvr_params_to_cache = {
|
178 |
-
"model_size": model_size,
|
179 |
-
"segment_size": segment_size
|
180 |
-
}
|
181 |
-
cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache}
|
182 |
-
cached_params["bgm_separation"] = cached_uvr_params
|
183 |
-
save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|