|
from dataclasses import dataclass, fields |
|
import gradio as gr |
|
from typing import Optional, Dict |
|
import yaml |
|
|
|
|
|
@dataclass |
|
class WhisperParameters: |
|
model_size: gr.Dropdown |
|
lang: gr.Dropdown |
|
is_translate: gr.Checkbox |
|
beam_size: gr.Number |
|
log_prob_threshold: gr.Number |
|
no_speech_threshold: gr.Number |
|
compute_type: gr.Dropdown |
|
best_of: gr.Number |
|
patience: gr.Number |
|
condition_on_previous_text: gr.Checkbox |
|
prompt_reset_on_temperature: gr.Slider |
|
initial_prompt: gr.Textbox |
|
temperature: gr.Slider |
|
compression_ratio_threshold: gr.Number |
|
vad_filter: gr.Checkbox |
|
threshold: gr.Slider |
|
min_speech_duration_ms: gr.Number |
|
max_speech_duration_s: gr.Number |
|
min_silence_duration_ms: gr.Number |
|
speech_pad_ms: gr.Number |
|
batch_size: gr.Number |
|
is_diarize: gr.Checkbox |
|
hf_token: gr.Textbox |
|
diarization_device: gr.Dropdown |
|
length_penalty: gr.Number |
|
repetition_penalty: gr.Number |
|
no_repeat_ngram_size: gr.Number |
|
prefix: gr.Textbox |
|
suppress_blank: gr.Checkbox |
|
suppress_tokens: gr.Textbox |
|
max_initial_timestamp: gr.Number |
|
word_timestamps: gr.Checkbox |
|
prepend_punctuations: gr.Textbox |
|
append_punctuations: gr.Textbox |
|
max_new_tokens: gr.Number |
|
chunk_length: gr.Number |
|
hallucination_silence_threshold: gr.Number |
|
hotwords: gr.Textbox |
|
language_detection_threshold: gr.Number |
|
language_detection_segments: gr.Number |
|
is_bgm_separate: gr.Checkbox |
|
uvr_model_size: gr.Dropdown |
|
uvr_device: gr.Dropdown |
|
uvr_segment_size: gr.Number |
|
uvr_save_file: gr.Checkbox |
|
uvr_enable_offload: gr.Checkbox |
|
""" |
|
A data class for Gradio components of the Whisper Parameters. Use "before" Gradio pre-processing. |
|
This data class is used to mitigate the key-value problem between Gradio components and function parameters. |
|
Related Gradio issue: https://github.com/gradio-app/gradio/issues/2471 |
|
See more about Gradio pre-processing: https://www.gradio.app/docs/components |
|
|
|
Attributes |
|
---------- |
|
model_size: gr.Dropdown |
|
Whisper model size. |
|
|
|
lang: gr.Dropdown |
|
Source language of the file to transcribe. |
|
|
|
is_translate: gr.Checkbox |
|
Boolean value that determines whether to translate to English. |
|
It's Whisper's feature to translate speech from another language directly into English end-to-end. |
|
|
|
beam_size: gr.Number |
|
Int value that is used for decoding option. |
|
|
|
log_prob_threshold: gr.Number |
|
If the average log probability over sampled tokens is below this value, treat as failed. |
|
|
|
no_speech_threshold: gr.Number |
|
If the no_speech probability is higher than this value AND |
|
the average log probability over sampled tokens is below `log_prob_threshold`, |
|
consider the segment as silent. |
|
|
|
compute_type: gr.Dropdown |
|
compute type for transcription. |
|
see more info : https://opennmt.net/CTranslate2/quantization.html |
|
|
|
best_of: gr.Number |
|
Number of candidates when sampling with non-zero temperature. |
|
|
|
patience: gr.Number |
|
Beam search patience factor. |
|
|
|
condition_on_previous_text: gr.Checkbox |
|
if True, the previous output of the model is provided as a prompt for the next window; |
|
disabling may make the text inconsistent across windows, but the model becomes less prone to |
|
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. |
|
|
|
initial_prompt: gr.Textbox |
|
Optional text to provide as a prompt for the first window. This can be used to provide, or |
|
"prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns |
|
to make it more likely to predict those word correctly. |
|
|
|
temperature: gr.Slider |
|
Temperature for sampling. It can be a tuple of temperatures, |
|
which will be successively used upon failures according to either |
|
`compression_ratio_threshold` or `log_prob_threshold`. |
|
|
|
compression_ratio_threshold: gr.Number |
|
If the gzip compression ratio is above this value, treat as failed |
|
|
|
vad_filter: gr.Checkbox |
|
Enable the voice activity detection (VAD) to filter out parts of the audio |
|
without speech. This step is using the Silero VAD model |
|
https://github.com/snakers4/silero-vad. |
|
|
|
threshold: gr.Slider |
|
This parameter is related with Silero VAD. Speech threshold. |
|
Silero VAD outputs speech probabilities for each audio chunk, |
|
probabilities ABOVE this value are considered as SPEECH. It is better to tune this |
|
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. |
|
|
|
min_speech_duration_ms: gr.Number |
|
This parameter is related with Silero VAD. Final speech chunks shorter min_speech_duration_ms are thrown out. |
|
|
|
max_speech_duration_s: gr.Number |
|
This parameter is related with Silero VAD. Maximum duration of speech chunks in seconds. Chunks longer |
|
than max_speech_duration_s will be split at the timestamp of the last silence that |
|
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be |
|
split aggressively just before max_speech_duration_s. |
|
|
|
min_silence_duration_ms: gr.Number |
|
This parameter is related with Silero VAD. In the end of each speech chunk wait for min_silence_duration_ms |
|
before separating it |
|
|
|
speech_pad_ms: gr.Number |
|
This parameter is related with Silero VAD. Final speech chunks are padded by speech_pad_ms each side |
|
|
|
batch_size: gr.Number |
|
This parameter is related with insanely-fast-whisper pipe. Batch size to pass to the pipe |
|
|
|
is_diarize: gr.Checkbox |
|
This parameter is related with whisperx. Boolean value that determines whether to diarize or not. |
|
|
|
hf_token: gr.Textbox |
|
This parameter is related with whisperx. Huggingface token is needed to download diarization models. |
|
Read more about : https://huggingface.co/pyannote/speaker-diarization-3.1#requirements |
|
|
|
diarization_device: gr.Dropdown |
|
This parameter is related with whisperx. Device to run diarization model |
|
|
|
length_penalty: gr.Number |
|
This parameter is related to faster-whisper. Exponential length penalty constant. |
|
|
|
repetition_penalty: gr.Number |
|
This parameter is related to faster-whisper. Penalty applied to the score of previously generated tokens |
|
(set > 1 to penalize). |
|
|
|
no_repeat_ngram_size: gr.Number |
|
This parameter is related to faster-whisper. Prevent repetitions of n-grams with this size (set 0 to disable). |
|
|
|
prefix: gr.Textbox |
|
This parameter is related to faster-whisper. Optional text to provide as a prefix for the first window. |
|
|
|
suppress_blank: gr.Checkbox |
|
This parameter is related to faster-whisper. Suppress blank outputs at the beginning of the sampling. |
|
|
|
suppress_tokens: gr.Textbox |
|
This parameter is related to faster-whisper. List of token IDs to suppress. -1 will suppress a default set |
|
of symbols as defined in the model config.json file. |
|
|
|
max_initial_timestamp: gr.Number |
|
This parameter is related to faster-whisper. The initial timestamp cannot be later than this. |
|
|
|
word_timestamps: gr.Checkbox |
|
This parameter is related to faster-whisper. Extract word-level timestamps using the cross-attention pattern |
|
and dynamic time warping, and include the timestamps for each word in each segment. |
|
|
|
prepend_punctuations: gr.Textbox |
|
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols |
|
with the next word. |
|
|
|
append_punctuations: gr.Textbox |
|
This parameter is related to faster-whisper. If word_timestamps is True, merge these punctuation symbols |
|
with the previous word. |
|
|
|
max_new_tokens: gr.Number |
|
This parameter is related to faster-whisper. Maximum number of new tokens to generate per-chunk. If not set, |
|
the maximum will be set by the default max_length. |
|
|
|
chunk_length: gr.Number |
|
This parameter is related to faster-whisper and insanely-fast-whisper. The length of audio segments in seconds. |
|
If it is not None, it will overwrite the default chunk_length of the FeatureExtractor. |
|
|
|
hallucination_silence_threshold: gr.Number |
|
This parameter is related to faster-whisper. When word_timestamps is True, skip silent periods longer than this threshold |
|
(in seconds) when a possible hallucination is detected. |
|
|
|
hotwords: gr.Textbox |
|
This parameter is related to faster-whisper. Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None. |
|
|
|
language_detection_threshold: gr.Number |
|
This parameter is related to faster-whisper. If the maximum probability of the language tokens is higher than this value, the language is detected. |
|
|
|
language_detection_segments: gr.Number |
|
This parameter is related to faster-whisper. Number of segments to consider for the language detection. |
|
|
|
is_separate_bgm: gr.Checkbox |
|
This parameter is related to UVR. Boolean value that determines whether to separate bgm or not. |
|
|
|
uvr_model_size: gr.Dropdown |
|
This parameter is related to UVR. UVR model size. |
|
|
|
uvr_device: gr.Dropdown |
|
This parameter is related to UVR. Device to run UVR model. |
|
|
|
uvr_segment_size: gr.Number |
|
This parameter is related to UVR. Segment size for UVR model. |
|
|
|
uvr_save_file: gr.Checkbox |
|
This parameter is related to UVR. Boolean value that determines whether to save the file or not. |
|
|
|
uvr_enable_offload: gr.Checkbox |
|
This parameter is related to UVR. Boolean value that determines whether to offload the UVR model or not |
|
after each transcription. |
|
""" |
|
|
|
def as_list(self) -> list: |
|
""" |
|
Converts the data class attributes into a list, Use in Gradio UI before Gradio pre-processing. |
|
See more about Gradio pre-processing: : https://www.gradio.app/docs/components |
|
|
|
Returns |
|
---------- |
|
A list of Gradio components |
|
""" |
|
return [getattr(self, f.name) for f in fields(self)] |
|
|
|
@staticmethod |
|
def as_value(*args) -> 'WhisperValues': |
|
""" |
|
To use Whisper parameters in function after Gradio post-processing. |
|
See more about Gradio post-processing: : https://www.gradio.app/docs/components |
|
|
|
Returns |
|
---------- |
|
WhisperValues |
|
Data class that has values of parameters |
|
""" |
|
return WhisperValues(*args) |
|
|
|
|
|
@dataclass |
|
class WhisperValues: |
|
model_size: str = "large-v2" |
|
lang: Optional[str] = None |
|
is_translate: bool = False |
|
beam_size: int = 5 |
|
log_prob_threshold: float = -1.0 |
|
no_speech_threshold: float = 0.6 |
|
compute_type: str = "float16" |
|
best_of: int = 5 |
|
patience: float = 1.0 |
|
condition_on_previous_text: bool = True |
|
prompt_reset_on_temperature: float = 0.5 |
|
initial_prompt: Optional[str] = None |
|
temperature: float = 0.0 |
|
compression_ratio_threshold: float = 2.4 |
|
vad_filter: bool = False |
|
threshold: float = 0.5 |
|
min_speech_duration_ms: int = 250 |
|
max_speech_duration_s: float = float("inf") |
|
min_silence_duration_ms: int = 2000 |
|
speech_pad_ms: int = 400 |
|
batch_size: int = 24 |
|
is_diarize: bool = False |
|
hf_token: str = "" |
|
diarization_device: str = "cuda" |
|
length_penalty: float = 1.0 |
|
repetition_penalty: float = 1.0 |
|
no_repeat_ngram_size: int = 0 |
|
prefix: Optional[str] = None |
|
suppress_blank: bool = True |
|
suppress_tokens: Optional[str] = "[-1]" |
|
max_initial_timestamp: float = 0.0 |
|
word_timestamps: bool = False |
|
prepend_punctuations: Optional[str] = "\"'“¿([{-" |
|
append_punctuations: Optional[str] = "\"'.。,,!!??::”)]}、" |
|
max_new_tokens: Optional[int] = None |
|
chunk_length: Optional[int] = 30 |
|
hallucination_silence_threshold: Optional[float] = None |
|
hotwords: Optional[str] = None |
|
language_detection_threshold: Optional[float] = None |
|
language_detection_segments: int = 1 |
|
is_bgm_separate: bool = False |
|
uvr_model_size: str = "UVR-MDX-NET-Inst_HQ_4" |
|
uvr_device: str = "cuda" |
|
uvr_segment_size: int = 256 |
|
uvr_save_file: bool = False |
|
uvr_enable_offload: bool = True |
|
""" |
|
A data class to use Whisper parameters. |
|
""" |
|
|
|
def to_yaml(self) -> Dict: |
|
data = { |
|
"whisper": { |
|
"model_size": self.model_size, |
|
"lang": "Automatic Detection" if self.lang is None else self.lang, |
|
"is_translate": self.is_translate, |
|
"beam_size": self.beam_size, |
|
"log_prob_threshold": self.log_prob_threshold, |
|
"no_speech_threshold": self.no_speech_threshold, |
|
"best_of": self.best_of, |
|
"patience": self.patience, |
|
"condition_on_previous_text": self.condition_on_previous_text, |
|
"prompt_reset_on_temperature": self.prompt_reset_on_temperature, |
|
"initial_prompt": None if not self.initial_prompt else self.initial_prompt, |
|
"temperature": self.temperature, |
|
"compression_ratio_threshold": self.compression_ratio_threshold, |
|
"batch_size": self.batch_size, |
|
"length_penalty": self.length_penalty, |
|
"repetition_penalty": self.repetition_penalty, |
|
"no_repeat_ngram_size": self.no_repeat_ngram_size, |
|
"prefix": None if not self.prefix else self.prefix, |
|
"suppress_blank": self.suppress_blank, |
|
"suppress_tokens": self.suppress_tokens, |
|
"max_initial_timestamp": self.max_initial_timestamp, |
|
"word_timestamps": self.word_timestamps, |
|
"prepend_punctuations": self.prepend_punctuations, |
|
"append_punctuations": self.append_punctuations, |
|
"max_new_tokens": self.max_new_tokens, |
|
"chunk_length": self.chunk_length, |
|
"hallucination_silence_threshold": self.hallucination_silence_threshold, |
|
"hotwords": None if not self.hotwords else self.hotwords, |
|
"language_detection_threshold": self.language_detection_threshold, |
|
"language_detection_segments": self.language_detection_segments, |
|
}, |
|
"vad": { |
|
"vad_filter": self.vad_filter, |
|
"threshold": self.threshold, |
|
"min_speech_duration_ms": self.min_speech_duration_ms, |
|
"max_speech_duration_s": self.max_speech_duration_s, |
|
"min_silence_duration_ms": self.min_silence_duration_ms, |
|
"speech_pad_ms": self.speech_pad_ms, |
|
}, |
|
"diarization": { |
|
"is_diarize": self.is_diarize, |
|
"hf_token": self.hf_token |
|
}, |
|
"bgm_separation": { |
|
"is_separate_bgm": self.is_bgm_separate, |
|
"model_size": self.uvr_model_size, |
|
"segment_size": self.uvr_segment_size, |
|
"save_file": self.uvr_save_file, |
|
"enable_offload": self.uvr_enable_offload |
|
}, |
|
} |
|
return data |
|
|
|
def as_list(self) -> list: |
|
""" |
|
Converts the data class attributes into a list |
|
|
|
Returns |
|
---------- |
|
A list of Whisper parameters |
|
""" |
|
return [getattr(self, f.name) for f in fields(self)] |
|
|