|
|
|
|
|
import os |
|
import subprocess |
|
from functools import lru_cache |
|
from typing import Optional, Union |
|
from scipy.io.wavfile import write |
|
import tempfile |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
def exact_div(x, y): |
|
assert x % y == 0 |
|
return x // y |
|
|
|
|
|
SAMPLE_RATE = 16000 |
|
N_FFT = 400 |
|
HOP_LENGTH = 160 |
|
CHUNK_LENGTH = 30 |
|
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE |
|
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) |
|
|
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 |
|
FRAMES_PER_SECOND = exact_div(SAMPLE_RATE, HOP_LENGTH) |
|
TOKENS_PER_SECOND = exact_div(SAMPLE_RATE, N_SAMPLES_PER_TOKEN) |
|
|
|
|
|
def load_audio(file: Union[str, np.ndarray], sr: int = SAMPLE_RATE) -> np.ndarray: |
|
""" |
|
Open an audio file or process a numpy array containing audio data as mono waveform, resampling as necessary. |
|
|
|
Parameters |
|
---------- |
|
file: Union[str, np.ndarray] |
|
The audio file to open or a numpy array containing the audio data. |
|
|
|
sr: int |
|
The sample rate to resample the audio if necessary. |
|
|
|
Returns |
|
------- |
|
A NumPy array containing the audio waveform, in float32 dtype. |
|
""" |
|
if isinstance(file, np.ndarray): |
|
if file.dtype != np.float32: |
|
file = file.astype(np.float32) |
|
if file.ndim > 1: |
|
file = np.mean(file, axis=1) |
|
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav") |
|
write(temp_file.name, SAMPLE_RATE, (file * 32768).astype(np.int16)) |
|
temp_file_path = temp_file.name |
|
temp_file.close() |
|
else: |
|
temp_file_path = file |
|
|
|
try: |
|
cmd = [ |
|
"ffmpeg", |
|
"-nostdin", |
|
"-threads", |
|
"0", |
|
"-i", |
|
temp_file_path, |
|
"-f", |
|
"s16le", |
|
"-ac", |
|
"1", |
|
"-acodec", |
|
"pcm_s16le", |
|
"-ar", |
|
str(sr), |
|
"-", |
|
] |
|
out = subprocess.run(cmd, capture_output=True, check=True).stdout |
|
except subprocess.CalledProcessError as e: |
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e |
|
finally: |
|
if isinstance(file, np.ndarray): |
|
os.remove(temp_file_path) |
|
|
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |
|
|
|
|
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1): |
|
""" |
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder. |
|
""" |
|
if torch.is_tensor(array): |
|
if array.shape[axis] > length: |
|
array = array.index_select( |
|
dim=axis, index=torch.arange(length, device=array.device) |
|
) |
|
|
|
if array.shape[axis] < length: |
|
pad_widths = [(0, 0)] * array.ndim |
|
pad_widths[axis] = (0, length - array.shape[axis]) |
|
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes]) |
|
else: |
|
if array.shape[axis] > length: |
|
array = array.take(indices=range(length), axis=axis) |
|
|
|
if array.shape[axis] < length: |
|
pad_widths = [(0, 0)] * array.ndim |
|
pad_widths[axis] = (0, length - array.shape[axis]) |
|
array = np.pad(array, pad_widths) |
|
|
|
return array |
|
|
|
|
|
@lru_cache(maxsize=None) |
|
def mel_filters(device, n_mels: int) -> torch.Tensor: |
|
""" |
|
load the mel filterbank matrix for projecting STFT into a Mel spectrogram. |
|
Allows decoupling librosa dependency; saved using: |
|
|
|
np.savez_compressed( |
|
"mel_filters.npz", |
|
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80), |
|
) |
|
""" |
|
assert n_mels in [80, 128], f"Unsupported n_mels: {n_mels}" |
|
with np.load( |
|
os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz") |
|
) as f: |
|
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device) |
|
|
|
|
|
def log_mel_spectrogram( |
|
audio: Union[str, np.ndarray, torch.Tensor], |
|
n_mels: int, |
|
padding: int = 0, |
|
device: Optional[Union[str, torch.device]] = None, |
|
): |
|
""" |
|
Compute the log-Mel spectrogram of |
|
|
|
Parameters |
|
---------- |
|
audio: Union[str, np.ndarray, torch.Tensor], shape = (*) |
|
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz |
|
|
|
n_mels: int |
|
The number of Mel-frequency filters, only 80 is supported |
|
|
|
padding: int |
|
Number of zero samples to pad to the right |
|
|
|
device: Optional[Union[str, torch.device]] |
|
If given, the audio tensor is moved to this device before STFT |
|
|
|
Returns |
|
------- |
|
torch.Tensor, shape = (80, n_frames) |
|
A Tensor that contains the Mel spectrogram |
|
""" |
|
if not torch.is_tensor(audio): |
|
if isinstance(audio, str): |
|
audio = load_audio(audio) |
|
audio = torch.from_numpy(audio) |
|
|
|
if device is not None: |
|
audio = audio.to(device) |
|
if padding > 0: |
|
audio = F.pad(audio, (0, padding)) |
|
window = torch.hann_window(N_FFT).to(audio.device) |
|
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
|
|
filters = mel_filters(audio.device, n_mels) |
|
mel_spec = filters @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
return log_spec |