File size: 4,332 Bytes
710db5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import whisper
import gradio as gr
import time
from typing import BinaryIO, Union, Tuple, List
import numpy as np
import torch
import os
from argparse import Namespace

from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, UVR_MODELS_DIR)
from modules.whisper.whisper_base import WhisperBase
from modules.whisper.whisper_parameter import *


class WhisperInference(WhisperBase):
    def __init__(self,
                 model_dir: str = WHISPER_MODELS_DIR,
                 diarization_model_dir: str = DIARIZATION_MODELS_DIR,
                 uvr_model_dir: str = UVR_MODELS_DIR,
                 output_dir: str = OUTPUT_DIR,
                 ):
        super().__init__(
            model_dir=model_dir,
            output_dir=output_dir,
            diarization_model_dir=diarization_model_dir,
            uvr_model_dir=uvr_model_dir
        )

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress = gr.Progress(),
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Parameters related with whisper. This will be dealt with "WhisperParameters" data class

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperParameters.as_value(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        segments_result = self.model.transcribe(audio=audio,
                                                language=params.lang,
                                                verbose=False,
                                                beam_size=params.beam_size,
                                                logprob_threshold=params.log_prob_threshold,
                                                no_speech_threshold=params.no_speech_threshold,
                                                task="translate" if params.is_translate and self.current_model_size in self.translatable_models else "transcribe",
                                                fp16=True if params.compute_type == "float16" else False,
                                                best_of=params.best_of,
                                                patience=params.patience,
                                                temperature=params.temperature,
                                                compression_ratio_threshold=params.compression_ratio_threshold,
                                                progress_callback=progress_callback,)["segments"]
        elapsed_time = time.time() - start_time

        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress = gr.Progress(),
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )