File size: 30,495 Bytes
b645714 aae0ebb 6b9c1cb b645714 5f641b4 b645714 94693b1 9dadcd7 d88de84 db6eb06 9dadcd7 d88de84 2454b76 5e14806 f47aa6a ec16f81 ace365a e89cc88 ace365a 5e14806 782d41c a4a2618 782d41c 22205d7 782d41c edfdbbb c4dd130 d8e191b 2f73f46 d8e191b 2f73f46 ae693d7 2f73f46 782d41c d8e191b 22205d7 2f73f46 22205d7 2f73f46 d8e191b 2f73f46 b645714 940dfc4 b645714 4bbbd41 b645714 775f489 b645714 10a54b7 ead1bcb b645714 8e71727 4bbbd41 b645714 a4738d6 f9de235 a4738d6 f9de235 b645714 e681803 b645714 0157bd1 b645714 940dfc4 b645714 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import os
import argparse
import gradio as gr
import yaml
from modules.utils.paths import (FASTER_WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, WHISPER_MODELS_DIR,
INSANELY_FAST_WHISPER_MODELS_DIR, NLLB_MODELS_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR)
from modules.utils.files_manager import load_yaml
from modules.whisper.whisper_factory import WhisperFactory
from modules.whisper.faster_whisper_inference import FasterWhisperInference
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.translation.nllb_inference import NLLBInference
from modules.ui.htmls import *
from modules.utils.cli_manager import str2bool
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.whisper_parameter import *
### Device info ###
import torch
import torchaudio
import torch.cuda as cuda
import platform
from transformers import __version__ as transformers_version
device = "cuda" if torch.cuda.is_available() else "cpu"
num_gpus = cuda.device_count() if torch.cuda.is_available() else 0
cuda_version = torch.version.cuda if torch.cuda.is_available() else "N/A"
cudnn_version = torch.backends.cudnn.version() if torch.cuda.is_available() else "N/A"
os_info = platform.system() + " " + platform.release() + " " + platform.machine()
# Get the available VRAM for each GPU (if available)
vram_info = []
if torch.cuda.is_available():
for i in range(cuda.device_count()):
gpu_properties = cuda.get_device_properties(i)
vram_info.append(f"**GPU {i}: {gpu_properties.total_memory / 1024**3:.2f} GB**")
pytorch_version = torch.__version__
torchaudio_version = torchaudio.__version__ if 'torchaudio' in dir() else "N/A"
device_info = f"""Running on: **{device}**
Number of GPUs available: **{num_gpus}**
CUDA version: **{cuda_version}**
CuDNN version: **{cudnn_version}**
PyTorch version: **{pytorch_version}**
Torchaudio version: **{torchaudio_version}**
Transformers version: **{transformers_version}**
Operating system: **{os_info}**
Available VRAM:
\t {', '.join(vram_info) if vram_info else '**N/A**'}
"""
### End Device info ###
class App:
def __init__(self, args):
self.args = args
#self.app = gr.Blocks(css=CSS, theme=self.args.theme, delete_cache=(60, 3600))
self.app = gr.Blocks(css=CSS,theme=gr.themes.Ocean(), title="Automatic speech recognition", delete_cache=(60, 3600))
self.whisper_inf = WhisperFactory.create_whisper_inference(
whisper_type=self.args.whisper_type,
whisper_model_dir=self.args.whisper_model_dir,
faster_whisper_model_dir=self.args.faster_whisper_model_dir,
insanely_fast_whisper_model_dir=self.args.insanely_fast_whisper_model_dir,
uvr_model_dir=self.args.uvr_model_dir,
output_dir=self.args.output_dir,
)
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.deepl_api = DeepLAPI(
output_dir=os.path.join(self.args.output_dir, "translations")
)
self.default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
print(f"Use \"{self.args.whisper_type}\" implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
def create_whisper_parameters(self):
whisper_params = self.default_params["whisper"]
diarization_params = self.default_params["diarization"]
vad_params = self.default_params["vad"]
uvr_params = self.default_params["bgm_separation"]
#Translation integration
translation_params = self.default_params["translation"]
nllb_params = translation_params["nllb"]
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value=whisper_params["model_size"],label="Model", info="Larger models increase transcription quality, but reduce performance", interactive=True)
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,value=whisper_params["lang"], label="Language", info="If the language is known upfront, always set it manually", interactive=True)
#dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
dd_file_format = gr.Dropdown(choices=["TXT","SRT"], value="TXT", label="Output format", info="Output preview format", interactive=True, visible=False)
with gr.Row():
dd_translate_model = gr.Dropdown(choices=self.nllb_inf.available_models, value=nllb_params["model_size"],label="Model", info="Model used for translation", interactive=True)
dd_target_lang = gr.Dropdown(choices=["English","Dutch","French","German"], value=nllb_params["target_lang"],label="Language", info="Language used for output translation", interactive=True)
with gr.Column(scale=1):
with gr.Row():
cb_timestamp = gr.Checkbox(value=whisper_params["add_timestamp"], label="Add timestamp to output file",interactive=True)
with gr.Row():
cb_translate = gr.Checkbox(value=whisper_params["is_translate"], label="Translate transcription to English", info="Translate using OpenAI Whisper's built-in module",interactive=True)
with gr.Row():
cb_translate_output = gr.Checkbox(value=translation_params["translate_output"], label="Translate output to selected language", info="Translate using Facebook's NLLB",interactive=True)
# with gr.Accordion("Speaker diarization", open=False, visible=True):
# cb_diarize = gr.Checkbox(value=diarization_params["is_diarize"], label="Use diarization",interactive=True)
# tb_hf_token = gr.Text(label="Token", value=diarization_params["hf_token"],info="Required to use diarization")
# gr.Markdown("""
# An access token can be created [here](https://hf.co/settings/tokens). If not done yet for your account, you need to accept the terms & conditions of [diarization](https://huggingface.co/pyannote/speaker-diarization-3.1) & [segmentation](https://huggingface.co/pyannote/segmentation-3.0).
# """)
with gr.Accordion("Speaker diarization", open=False, visible=True):
cb_diarize = gr.Checkbox(value=diarization_params["is_diarize"],label="Use diarization",interactive=True)
tb_hf_token = gr.Text(label="Token", value=diarization_params["hf_token"],info="An access token is required to use diarization & can be created [here](https://hf.co/settings/tokens). If not done yet for your account, you need to accept the terms & conditions of [diarization](https://huggingface.co/pyannote/speaker-diarization-3.1) & [segmentation](https://huggingface.co/pyannote/segmentation-3.0)")
with gr.Accordion("Voice Detection Filter", open=False, visible=True):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
interactive=True,
info="Enable to transcribe only detected voice parts")
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
value=vad_params["threshold"],
info="Lower it to be more sensitive to small sounds")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
value=vad_params["min_speech_duration_ms"],
info="Final speech chunks shorter than this time are thrown out")
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)",
value=vad_params["max_speech_duration_s"],
info="Maximum duration of speech chunks in seconds")
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
value=vad_params["min_silence_duration_ms"],
info="In the end of each speech chunk wait for this time"
" before separating it")
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
info="Final speech chunks are padded by this time each side")
with gr.Accordion("Advanced options", open=False, visible=False):
with gr.Accordion("Advanced diarization options", open=False, visible=True):
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
with gr.Accordion("Advanced processing options", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=whisper_params["beam_size"], precision=0, interactive=True,
info="Beam size to use for decoding.")
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=whisper_params["log_prob_threshold"], interactive=True,
info="If the average log probability over sampled tokens is below this value, treat as failed.")
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=whisper_params["no_speech_threshold"], interactive=True,
info="If the no speech probability is higher than this value AND the average log probability over sampled tokens is below 'Log Prob Threshold', consider the segment as silent.")
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types,
value=self.whisper_inf.current_compute_type, interactive=True,
allow_custom_value=True,
info="Select the type of computation to perform.")
nb_best_of = gr.Number(label="Best Of", value=whisper_params["best_of"], interactive=True,
info="Number of candidates when sampling with non-zero temperature.")
nb_patience = gr.Number(label="Patience", value=whisper_params["patience"], interactive=True,
info="Beam search patience factor.")
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=whisper_params["condition_on_previous_text"],
interactive=True,
info="Condition on previous text during decoding.")
sld_prompt_reset_on_temperature = gr.Slider(label="Prompt Reset On Temperature", value=whisper_params["prompt_reset_on_temperature"],
minimum=0, maximum=1, step=0.01, interactive=True,
info="Resets prompt if temperature is above this value."
" Arg has effect only if 'Condition On Previous Text' is True.")
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True,
info="Initial prompt to use for decoding.")
sd_temperature = gr.Slider(label="Temperature", value=whisper_params["temperature"], minimum=0.0,
step=0.01, maximum=1.0, interactive=True,
info="Temperature for sampling. It can be a tuple of temperatures, which will be successively used upon failures according to either `Compression Ratio Threshold` or `Log Prob Threshold`.")
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=whisper_params["compression_ratio_threshold"],
interactive=True,
info="If the gzip compression ratio is above this value, treat as failed.")
nb_chunk_length = gr.Number(label="Chunk Length (s)", value=lambda: whisper_params["chunk_length"],
precision=0,
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
nb_length_penalty = gr.Number(label="Length Penalty", value=whisper_params["length_penalty"],
info="Exponential length penalty constant.")
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=whisper_params["repetition_penalty"],
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=whisper_params["no_repeat_ngram_size"],
precision=0,
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
tb_prefix = gr.Textbox(label="Prefix", value=lambda: whisper_params["prefix"],
info="Optional text to provide as a prefix for the first window.")
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=whisper_params["suppress_blank"],
info="Suppress blank outputs at the beginning of the sampling.")
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value=whisper_params["suppress_tokens"],
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=whisper_params["max_initial_timestamp"],
info="The initial timestamp cannot be later than this.")
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=whisper_params["word_timestamps"],
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value=whisper_params["prepend_punctuations"],
info="If 'Word Timestamps' is True, merge these punctuation symbols with the next word.")
tb_append_punctuations = gr.Textbox(label="Append Punctuations", value=whisper_params["append_punctuations"],
info="If 'Word Timestamps' is True, merge these punctuation symbols with the previous word.")
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=lambda: whisper_params["max_new_tokens"],
precision=0,
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold (sec)",
value=lambda: whisper_params["hallucination_silence_threshold"],
info="When 'Word Timestamps' is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
tb_hotwords = gr.Textbox(label="Hotwords", value=lambda: whisper_params["hotwords"],
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold", value=lambda: whisper_params["language_detection_threshold"],
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=lambda: whisper_params["language_detection_segments"],
precision=0,
info="Number of segments to consider for the language detection.")
with gr.Group(visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_batch_size = gr.Number(label="Batch Size", value=whisper_params["batch_size"], precision=0)
with gr.Accordion("Background Music Remover Filter", open=False):
cb_bgm_separation = gr.Checkbox(label="Enable Background Music Remover Filter", value=uvr_params["is_separate_bgm"],
interactive=True,
info="Enabling this will remove background music by submodel before transcribing.")
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
choices=self.whisper_inf.music_separator.available_devices)
dd_uvr_model_size = gr.Dropdown(label="Model", value=uvr_params["model_size"],
choices=self.whisper_inf.music_separator.available_models)
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output", value=uvr_params["save_file"])
cb_uvr_enable_offload = gr.Checkbox(label="Offload sub model after removing background music",
value=uvr_params["enable_offload"])
# with gr.Accordion("Voice Detection Filter", open=False):
# cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=vad_params["vad_filter"],
# interactive=True,
# info="Enable this to transcribe only detected voice parts by submodel.")
# sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
# value=vad_params["threshold"],
# info="Lower it to be more sensitive to small sounds.")
# nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
# value=vad_params["min_speech_duration_ms"],
# info="Final speech chunks shorter than this time are thrown out")
# nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)",
# value=vad_params["max_speech_duration_s"],
# info="Maximum duration of speech chunks in \"seconds\".")
# nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
# value=vad_params["min_silence_duration_ms"],
# info="In the end of each speech chunk wait for this time"
# " before separating it")
# nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=vad_params["speech_pad_ms"],
# info="Final speech chunks are padded by this time each side")
#dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
return (
WhisperParameters(
model_size=dd_model, lang=dd_lang, is_translate=cb_translate, beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold, no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type, best_of=nb_best_of, patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text, initial_prompt=tb_initial_prompt,
temperature=sd_temperature, compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter, threshold=sd_threshold, min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s, min_silence_duration_ms=nb_min_silence_duration_ms,
speech_pad_ms=nb_speech_pad_ms, chunk_length=nb_chunk_length, batch_size=nb_batch_size,
is_diarize=cb_diarize, hf_token=tb_hf_token, diarization_device=dd_diarization_device,
length_penalty=nb_length_penalty, repetition_penalty=nb_repetition_penalty,
no_repeat_ngram_size=nb_no_repeat_ngram_size, prefix=tb_prefix, suppress_blank=cb_suppress_blank,
suppress_tokens=tb_suppress_tokens, max_initial_timestamp=nb_max_initial_timestamp,
word_timestamps=cb_word_timestamps, prepend_punctuations=tb_prepend_punctuations,
append_punctuations=tb_append_punctuations, max_new_tokens=nb_max_new_tokens,
hallucination_silence_threshold=nb_hallucination_silence_threshold, hotwords=tb_hotwords,
language_detection_threshold=nb_language_detection_threshold,
language_detection_segments=nb_language_detection_segments,
prompt_reset_on_temperature=sld_prompt_reset_on_temperature, is_bgm_separate=cb_bgm_separation,
uvr_device=dd_uvr_device, uvr_model_size=dd_uvr_model_size, uvr_segment_size=nb_uvr_segment_size,
uvr_save_file=cb_uvr_save_file, uvr_enable_offload=cb_uvr_enable_offload
),
dd_file_format,
cb_timestamp,
cb_translate_output,
dd_translate_model,
dd_target_lang
)
def launch(self):
translation_params = self.default_params["translation"]
deepl_params = translation_params["deepl"]
nllb_params = translation_params["nllb"]
uvr_params = self.default_params["bgm_separation"]
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("Audio upload/record"): # tab1
with gr.Column():
#input_file = gr.Files(type="filepath", label="Upload File here")
#input_file = gr.File(type="filepath", label="Upload audio/video file here")
input_file = gr.Audio(type='filepath', elem_id="audio_input", show_download_button=True)
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
" Leave this field empty if you do not wish to use a local path.",
visible=self.args.colab,
value="")
whisper_params, dd_file_format, cb_timestamp, cb_translate_output, dd_translate_model, dd_target_lang = self.create_whisper_parameters()
with gr.Row():
btn_run = gr.Button("Transcribe", variant="primary")
btn_reset = gr.Button(value="Reset")
btn_reset.click(None,js="window.location.reload()")
with gr.Row():
with gr.Column(scale=4):
tb_indicator = gr.Textbox(label="Output preview (Always review & verify the output generated by AI models)", show_copy_button=True, show_label=True)
with gr.Column(scale=1):
tb_info = gr.Textbox(label="Output info", interactive=False, show_copy_button=True)
files_subtitles = gr.Files(label="Output data", interactive=False, file_count="multiple")
# btn_openfolder = gr.Button('📂', scale=1)
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp, cb_translate_output, dd_translate_model, dd_target_lang]
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles, tb_info])
# btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
with gr.TabItem("Device info"): # tab2
with gr.Column():
gr.Markdown(device_info, label="Hardware info & installed packages")
# Launch the app with optional gradio settings
args = self.args
self.app.queue(
api_open=args.api_open
).launch(
share=args.share,
server_name=args.server_name,
server_port=args.server_port,
auth=(args.username, args.password) if args.username and args.password else None,
root_path=args.root_path,
inbrowser=args.inbrowser
)
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
os.makedirs(folder_path, exist_ok=True)
print(f"The directory path {folder_path} has newly created.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
#return gr.Checkbox(visible=True, value=False, label="Translate to English (large models only)", interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English", interactive=True)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
parser.add_argument('--share', type=str2bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=str2bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=str2bool, default=False, nargs='?', const=True, help='Enable api or not in Gradio')
parser.add_argument('--inbrowser', type=str2bool, default=True, nargs='?', const=True, help='Whether to automatically start Gradio app or not')
parser.add_argument('--whisper_model_dir', type=str, default=WHISPER_MODELS_DIR,
help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=FASTER_WHISPER_MODELS_DIR,
help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
default=INSANELY_FAST_WHISPER_MODELS_DIR,
help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=DIARIZATION_MODELS_DIR,
help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=NLLB_MODELS_DIR,
help='Directory path of the Facebook NLLB model')
parser.add_argument('--uvr_model_dir', type=str, default=UVR_MODELS_DIR,
help='Directory path of the UVR model')
parser.add_argument('--output_dir', type=str, default=OUTPUT_DIR, help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|