Spaces:
Running
on
T4
Running
on
T4
# Copyright (c) 2020-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# | |
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual | |
# property and proprietary rights in and to this material, related | |
# documentation and any modifications thereto. Any use, reproduction, | |
# disclosure or distribution of this material and related documentation | |
# without an express license agreement from NVIDIA CORPORATION or | |
# its affiliates is strictly prohibited. | |
import torch | |
import os | |
import sys | |
sys.path.insert(0, os.path.join(sys.path[0], '../..')) | |
import renderutils as ru | |
BATCH = 8 | |
RES = 1024 | |
DTYPE = torch.float32 | |
torch.manual_seed(0) | |
def tonemap_srgb(f): | |
return torch.where(f > 0.0031308, torch.pow(torch.clamp(f, min=0.0031308), 1.0/2.4)*1.055 - 0.055, 12.92*f) | |
def l1(output, target): | |
x = torch.clamp(output, min=0, max=65535) | |
r = torch.clamp(target, min=0, max=65535) | |
x = tonemap_srgb(torch.log(x + 1)) | |
r = tonemap_srgb(torch.log(r + 1)) | |
return torch.nn.functional.l1_loss(x,r) | |
def relative_loss(name, ref, cuda): | |
ref = ref.float() | |
cuda = cuda.float() | |
print(name, torch.max(torch.abs(ref - cuda) / torch.abs(ref)).item()) | |
def test_xfm_points(): | |
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) | |
points_ref = points_cuda.clone().detach().requires_grad_(True) | |
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) | |
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) | |
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) | |
ref_out = ru.xfm_points(points_ref, mtx_ref, use_python=True) | |
ref_loss = torch.nn.MSELoss()(ref_out, target) | |
ref_loss.backward() | |
cuda_out = ru.xfm_points(points_cuda, mtx_cuda) | |
cuda_loss = torch.nn.MSELoss()(cuda_out, target) | |
cuda_loss.backward() | |
print("-------------------------------------------------------------") | |
relative_loss("res:", ref_out, cuda_out) | |
relative_loss("points:", points_ref.grad, points_cuda.grad) | |
def test_xfm_vectors(): | |
points_cuda = torch.rand(1, RES, 3, dtype=DTYPE, device='cuda', requires_grad=True) | |
points_ref = points_cuda.clone().detach().requires_grad_(True) | |
points_cuda_p = points_cuda.clone().detach().requires_grad_(True) | |
points_ref_p = points_cuda.clone().detach().requires_grad_(True) | |
mtx_cuda = torch.rand(BATCH, 4, 4, dtype=DTYPE, device='cuda', requires_grad=False) | |
mtx_ref = mtx_cuda.clone().detach().requires_grad_(True) | |
target = torch.rand(BATCH, RES, 4, dtype=DTYPE, device='cuda', requires_grad=True) | |
ref_out = ru.xfm_vectors(points_ref.contiguous(), mtx_ref, use_python=True) | |
ref_loss = torch.nn.MSELoss()(ref_out, target[..., 0:3]) | |
ref_loss.backward() | |
cuda_out = ru.xfm_vectors(points_cuda.contiguous(), mtx_cuda) | |
cuda_loss = torch.nn.MSELoss()(cuda_out, target[..., 0:3]) | |
cuda_loss.backward() | |
ref_out_p = ru.xfm_points(points_ref_p.contiguous(), mtx_ref, use_python=True) | |
ref_loss_p = torch.nn.MSELoss()(ref_out_p, target) | |
ref_loss_p.backward() | |
cuda_out_p = ru.xfm_points(points_cuda_p.contiguous(), mtx_cuda) | |
cuda_loss_p = torch.nn.MSELoss()(cuda_out_p, target) | |
cuda_loss_p.backward() | |
print("-------------------------------------------------------------") | |
relative_loss("res:", ref_out, cuda_out) | |
relative_loss("points:", points_ref.grad, points_cuda.grad) | |
relative_loss("points_p:", points_ref_p.grad, points_cuda_p.grad) | |
test_xfm_points() | |
test_xfm_vectors() | |