import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import spaces # Load model and tokenizer tokenizer = None model = None def loadmodel(): global tokenizer, model tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16") model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype=torch.float16, device_map= 'auto') #model = model.to('cuda') # Move the model to GPU if available pass # Define a function for generating text from a prompt @spaces.GPU def generate_text(prompt): global tokenizer, model inputs = tokenizer(prompt, return_tensors="pt").to('cuda') # Tokenize input and move to GPU outputs = model.generate(inputs.input_ids, max_length=100) # Generate output text return tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode and return the text # Create Gradio Interface interface = gr.Interface( fn=generate_text, # Function that handles text generation inputs="text", # Input is a text box outputs="text", # Output is a text box title="Meta-Llama-3.1-70B Text Generation", description="Enter a prompt and generate text using Meta-Llama-3.1-70B.", ) # Launch the Gradio app interface.launch()