Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import spaces | |
# Load model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16") | |
model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype=torch.float16) | |
model = model.to('cuda') # Move the model to GPU if available | |
# Define a function for generating text from a prompt | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt").to('cuda') # Tokenize input and move to GPU | |
outputs = model.generate(inputs.input_ids, max_length=100) # Generate output text | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode and return the text | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=generate_text, # Function that handles text generation | |
inputs="text", # Input is a text box | |
outputs="text", # Output is a text box | |
title="Meta-Llama-3.1-70B Text Generation", | |
description="Enter a prompt and generate text using Meta-Llama-3.1-70B.", | |
) | |
# Launch the Gradio app | |
interface.launch() |