Spaces:
Sleeping
Sleeping
File size: 1,138 Bytes
136e821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16")
model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype=torch.float16)
model = model.to('cuda') # Move the model to GPU if available
# Define a function for generating text from a prompt
def generate_text(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to('cuda') # Tokenize input and move to GPU
outputs = model.generate(inputs.input_ids, max_length=100) # Generate output text
return tokenizer.decode(outputs[0], skip_special_tokens=True) # Decode and return the text
# Create Gradio Interface
interface = gr.Interface(
fn=generate_text, # Function that handles text generation
inputs="text", # Input is a text box
outputs="text", # Output is a text box
title="Meta-Llama-3.1-70B Text Generation",
description="Enter a prompt and generate text using Meta-Llama-3.1-70B.",
)
# Launch the Gradio app
interface.launch() |