File size: 1,138 Bytes
136e821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16")
model = AutoModelForCausalLM.from_pretrained("ISTA-DASLab/Meta-Llama-3.1-70B-AQLM-PV-2Bit-1x16", torch_dtype=torch.float16)
model = model.to('cuda')  # Move the model to GPU if available

# Define a function for generating text from a prompt
def generate_text(prompt):
    inputs = tokenizer(prompt, return_tensors="pt").to('cuda')  # Tokenize input and move to GPU
    outputs = model.generate(inputs.input_ids, max_length=100)  # Generate output text
    return tokenizer.decode(outputs[0], skip_special_tokens=True)  # Decode and return the text

# Create Gradio Interface
interface = gr.Interface(
    fn=generate_text,  # Function that handles text generation
    inputs="text",  # Input is a text box
    outputs="text",  # Output is a text box
    title="Meta-Llama-3.1-70B Text Generation",
    description="Enter a prompt and generate text using Meta-Llama-3.1-70B.",
)

# Launch the Gradio app
interface.launch()