KvrParaskevi commited on
Commit
6a1830a
·
verified ·
1 Parent(s): 7500084

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -7
app.py CHANGED
@@ -7,6 +7,7 @@ from langchain.schema import (
7
  SystemMessage,
8
  )
9
  from langchain_community.chat_models.huggingface import ChatHuggingFace
 
10
 
11
  st.title("Hi, I am Chatbot Philio :mermaid:")
12
  st.write("I am your hotel booking assistant for today.")
@@ -17,11 +18,14 @@ st.write("I am your hotel booking assistant for today.")
17
  # base="light"
18
  # primaryColor="#6b4bff"
19
 
20
- model = demo_chat.load_model()
21
- token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
 
 
 
 
 
22
 
23
- chat_model = ChatHuggingFace(llm=model, token=token)
24
- print(chat_model.model_id)
25
 
26
  #Application
27
  with st.container():
@@ -43,7 +47,6 @@ with st.container():
43
  with st.chat_message(message["role"]):
44
  st.write(message["content"])
45
 
46
- chat_model._to_chat_prompt(st.session_state.chat_history)
47
 
48
  #Set up input text field
49
  input_text = st.chat_input(placeholder="Here you can chat with our hotel booking model.")
@@ -54,8 +57,9 @@ with st.container():
54
  st.session_state.chat_history.append({"role" : "user", "content" : input_text}) #append message to chat history
55
 
56
  chat_response = demo_chat.demo_chain(input_text=input_text, memory=st.session_state.memory, model= chat_model)
57
- first_answer = chat_response.split("Human")[0] #Because of Predict it prints the whole conversation.Here we seperate the first answer only.
58
-
 
59
  with st.chat_message("assistant"):
60
  st.write(first_answer)
61
  st.session_state.chat_history.append({"role": "assistant", "content": first_answer})
 
7
  SystemMessage,
8
  )
9
  from langchain_community.chat_models.huggingface import ChatHuggingFace
10
+ from transformers import pipeline
11
 
12
  st.title("Hi, I am Chatbot Philio :mermaid:")
13
  st.write("I am your hotel booking assistant for today.")
 
18
  # base="light"
19
  # primaryColor="#6b4bff"
20
 
21
+ tokenizer, model = demo_chat.load_model()
22
+
23
+ model_identifier = "KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b"
24
+ task = "text-classification" # Change this to your model's task
25
+
26
+ # Load the model using the pipeline
27
+ model_pipeline = pipeline(task, model=model,tokenizer=tokenizer)
28
 
 
 
29
 
30
  #Application
31
  with st.container():
 
47
  with st.chat_message(message["role"]):
48
  st.write(message["content"])
49
 
 
50
 
51
  #Set up input text field
52
  input_text = st.chat_input(placeholder="Here you can chat with our hotel booking model.")
 
57
  st.session_state.chat_history.append({"role" : "user", "content" : input_text}) #append message to chat history
58
 
59
  chat_response = demo_chat.demo_chain(input_text=input_text, memory=st.session_state.memory, model= chat_model)
60
+ #first_answer = chat_response.split("Human")[0] #Because of Predict it prints the whole conversation.Here we seperate the first answer only.
61
+ first_answer = model_pipeline(st.session_state.chat_history)
62
+
63
  with st.chat_message("assistant"):
64
  st.write(first_answer)
65
  st.session_state.chat_history.append({"role": "assistant", "content": first_answer})