import os | |
#from langchain import PromptTemplate, HuggingFaceHub, LLMChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationChain | |
import langchain.globals | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import streamlit as st | |
from langchain_community.llms import HuggingFaceHub | |
my_model_id = os.getenv('MODEL_REPO_ID', 'Default Value') | |
def load_model(): | |
#tokenizer = AutoTokenizer.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b") | |
#model = AutoModelForCausalLM.from_pretrained("KvrParaskevi/Hotel-Assistant-Attempt4-Llama-2-7b") | |
model = HuggingFaceHub( | |
repo_id=my_model_id, | |
task="text-generation", | |
model_kwargs={ | |
"max_new_tokens": 512, | |
"top_k": 30, | |
"temperature": 0.1, | |
"repetition_penalty": 1.03, | |
}, | |
) | |
return model | |
def demo_miny_memory(model): | |
# llm_data = get_Model(hugging_face_key) | |
memory = ConversationBufferMemory(llm = model,max_token_limit = 512) | |
return memory | |
def demo_chain(input_text, memory,model): | |
# llm_data = get_Model(hugging_face_key) | |
llm_conversation = ConversationChain(llm=model,memory=memory,verbose=langchain.globals.get_verbose()) | |
chat_reply = llm_conversation.predict(input=input_text) | |
return chat_reply |