|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import gradio as gr |
|
import torch |
|
|
|
trained_tokenizer = GPT2Tokenizer.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") |
|
trained_model = GPT2LMHeadModel.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") |
|
untrained_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
untrained_model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
trained_model.to(device) |
|
untrained_model.to(device) |
|
|
|
def generate(commentary_text, max_length, temperature): |
|
|
|
input_ids = trained_tokenizer(commentary_text, return_tensors="pt").input_ids.to(device) |
|
trained_output = trained_model.generate(input_ids, max_length=max_length, num_beams=5, do_sample=False, temperature=temperature) |
|
trained_text = trained_tokenizer.decode(trained_output[0], skip_special_tokens=True) |
|
|
|
|
|
input_ids = untrained_tokenizer(commentary_text, return_tensors="pt").input_ids.to(device) |
|
untrained_output = untrained_model.generate(input_ids, max_length=max_length, num_beams=5, do_sample=False,temperature=temperature) |
|
untrained_text = untrained_tokenizer.decode(untrained_output[0], skip_special_tokens=True) |
|
|
|
return trained_text, untrained_text |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate, |
|
inputs=[ |
|
gr.inputs.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"), |
|
gr.inputs.Slider(minimum=10, maximum=100, default=50, label="Max Length"), |
|
gr.inputs.Slider(minimum=0.1, maximum=1.0, default=0.7, label="Temperature") |
|
], |
|
outputs=[ |
|
gr.outputs.Textbox(label="commentary generation from finetuned GPT2 Model"), |
|
gr.outputs.Textbox(label="commentary generation from base GPT2 Model") |
|
], |
|
title="GPT-2 Text Generation", |
|
description="start writing a cricket commentary and GPT-2 will continue it using both a finetuned and base model." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |