|
import gradio as gr |
|
import pandas as pd |
|
from tensorflow.keras.preprocessing.text import Tokenizer |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
from tensorflow.keras.models import load_model |
|
from huggingface_hub import hf_hub_download |
|
import numpy as np |
|
import tensorflow as tf |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
import torch |
|
|
|
|
|
repo_id = "himanishprak23/lstm_rnn" |
|
lstm_filename = "model_lstm_4.keras" |
|
rnn_filename = "model_rnn_1.keras" |
|
lstm_model_path = hf_hub_download(repo_id=repo_id, filename=lstm_filename) |
|
rnn_model_path = hf_hub_download(repo_id=repo_id, filename=rnn_filename) |
|
|
|
data_text_path = "/Users/himanishprakash/NLP-Application/code/data_preprocess/df_commentary.csv" |
|
|
|
|
|
lstm_model = load_model(lstm_model_path) |
|
|
|
|
|
rnn_model = load_model(rnn_model_path) |
|
|
|
|
|
data_text = pd.read_csv(data_text_path) |
|
|
|
|
|
embedding_layer = lstm_model.layers[0] |
|
vocab_size = embedding_layer.input_dim |
|
|
|
|
|
tokenizer = Tokenizer(num_words=vocab_size) |
|
tokenizer.fit_on_texts(data_text['Modified_Commentary']) |
|
|
|
|
|
max_sequence_length = 153 |
|
|
|
|
|
def generate_with_lstm(commentary_text, num_words): |
|
|
|
input_sequence = tokenizer.texts_to_sequences([commentary_text]) |
|
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length) |
|
|
|
|
|
input_tensor = tf.convert_to_tensor(input_sequence) |
|
|
|
|
|
generated_sequence = [] |
|
for _ in range(num_words): |
|
|
|
output = lstm_model.predict(input_tensor) |
|
|
|
|
|
next_word_index = np.argmax(output[0], axis=-1) |
|
|
|
|
|
generated_sequence.append(next_word_index) |
|
|
|
|
|
input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1) |
|
input_tensor = tf.convert_to_tensor(input_sequence) |
|
|
|
|
|
reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size} |
|
generated_words = [reverse_word_index.get(i, '') for i in generated_sequence] |
|
|
|
|
|
generated_text = commentary_text + ' ' + ' '.join(generated_words) |
|
|
|
return generated_text |
|
|
|
|
|
def generate_with_rnn(commentary_text, num_words): |
|
|
|
input_sequence = tokenizer.texts_to_sequences([commentary_text]) |
|
input_sequence = pad_sequences(input_sequence, maxlen=max_sequence_length) |
|
|
|
|
|
input_tensor = tf.convert_to_tensor(input_sequence) |
|
|
|
|
|
generated_sequence = [] |
|
for _ in range(num_words): |
|
|
|
output = rnn_model.predict(input_tensor) |
|
|
|
|
|
next_word_index = np.argmax(output[0], axis=-1) |
|
|
|
|
|
generated_sequence.append(next_word_index) |
|
|
|
|
|
input_sequence = np.append(input_sequence[0][1:], next_word_index).reshape(1, -1) |
|
input_tensor = tf.convert_to_tensor(input_sequence) |
|
|
|
|
|
reverse_word_index = {value: key for key, value in tokenizer.word_index.items() if value < vocab_size} |
|
generated_words = [reverse_word_index.get(i, '') for i in generated_sequence] |
|
|
|
|
|
generated_text = commentary_text + ' ' + ' '.join(generated_words) |
|
|
|
return generated_text |
|
|
|
|
|
trained_tokenizer = GPT2Tokenizer.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") |
|
trained_model = GPT2LMHeadModel.from_pretrained("Kumarkishalaya/GPT-2-next-word-prediction") |
|
untrained_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
untrained_model = GPT2LMHeadModel.from_pretrained("gpt2") |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
trained_model.to(device) |
|
untrained_model.to(device) |
|
|
|
|
|
trained_tokenizer.pad_token = trained_tokenizer.eos_token |
|
untrained_tokenizer.pad_token = untrained_tokenizer.eos_token |
|
|
|
|
|
def generate_with_gpt2(commentary_text, max_length, temperature): |
|
|
|
inputs = trained_tokenizer(commentary_text, return_tensors="pt", padding=True) |
|
input_ids = inputs.input_ids.to(device) |
|
attention_mask = inputs.attention_mask.to(device) |
|
trained_output = trained_model.generate( |
|
input_ids, |
|
max_length=max_length, |
|
num_beams=5, |
|
do_sample=True, |
|
temperature=temperature, |
|
attention_mask=attention_mask, |
|
pad_token_id=trained_tokenizer.eos_token_id |
|
) |
|
trained_text = trained_tokenizer.decode(trained_output[0], skip_special_tokens=True) |
|
|
|
|
|
inputs = untrained_tokenizer(commentary_text, return_tensors="pt", padding=True) |
|
input_ids = inputs.input_ids.to(device) |
|
attention_mask = inputs.attention_mask.to(device) |
|
untrained_output = untrained_model.generate( |
|
input_ids, |
|
max_length=max_length, |
|
num_beams=5, |
|
do_sample=True, |
|
temperature=temperature, |
|
attention_mask=attention_mask, |
|
pad_token_id=untrained_tokenizer.eos_token_id |
|
) |
|
untrained_text = untrained_tokenizer.decode(untrained_output[0], skip_special_tokens=True) |
|
|
|
return trained_text, untrained_text |
|
|
|
|
|
def generate_with_all_models(commentary_text, num_words, max_length, temperature): |
|
lstm_output = generate_with_lstm(commentary_text, num_words) |
|
rnn_output = generate_with_rnn(commentary_text, num_words) |
|
gpt2_finetuned_output, gpt2_base_output = generate_with_gpt2(commentary_text, max_length, temperature) |
|
return lstm_output, rnn_output, gpt2_finetuned_output, gpt2_base_output |
|
|
|
|
|
commentrymodel = gr.Interface( |
|
fn=generate_with_all_models, |
|
inputs=[ |
|
gr.Textbox(lines=2, placeholder="Enter commentary text here...", label="Prompt"), |
|
gr.Slider(minimum=1, maximum=50, step=1, value=10, label="Number of words to predict (LSTM/RNN)"), |
|
gr.Slider(minimum=10, maximum=100, value=50, step=1, label="Max Length (GPT-2)"), |
|
gr.Slider(minimum=0.01, maximum=1.99, value=0.7, label="Temperature (GPT-2)") |
|
], |
|
outputs=[ |
|
gr.Textbox(label="LSTM Model Output"), |
|
gr.Textbox(label="RNN Model Output"), |
|
gr.Textbox(label="GPT-2 Finetuned Model Output"), |
|
gr.Textbox(label="GPT-2 Base Model Output") |
|
], |
|
title="Text Generation with LSTM, RNN, and GPT-2 Models", |
|
description="Start writing a cricket commentary and the models will continue it. Compare outputs from LSTM, RNN, and GPT-2 (finetuned and base) models." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
commentrymodel.launch() |
|
|