"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os from math import * def P2sRt(P): ''' decompositing camera matrix P. Args: P: (3, 4). Affine Camera Matrix. Returns: s: scale factor. R: (3, 3). rotation matrix. t2d: (2,). 2d translation. ''' t3d = P[:, 3] R1 = P[0:1, :3] R2 = P[1:2, :3] s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2.0 r1 = R1 / np.linalg.norm(R1) r2 = R2 / np.linalg.norm(R2) r3 = np.cross(r1, r2) R = np.concatenate((r1, r2, r3), 0) return s, R, t3d def matrix2angle(R): ''' compute three Euler angles from a Rotation Matrix. Ref: http://www.gregslabaugh.net/publications/euler.pdf Args: R: (3,3). rotation matrix Returns: x: yaw y: pitch z: roll ''' # assert(isRotationMatrix(R)) if R[2, 0] != 1 and R[2, 0] != -1: x = -asin(max(-1, min(R[2, 0], 1))) y = atan2(R[2, 1] / cos(x), R[2, 2] / cos(x)) z = atan2(R[1, 0] / cos(x), R[0, 0] / cos(x)) else: # Gimbal lock z = 0 # can be anything if R[2, 0] == -1: x = np.pi / 2 y = z + atan2(R[0, 1], R[0, 2]) else: x = -np.pi / 2 y = -z + atan2(-R[0, 1], -R[0, 2]) return [x, y, z] def angle2matrix(angles): ''' get rotation matrix from three rotation angles(radian). The same as in 3DDFA. Args: angles: [3,]. x, y, z angles x: yaw. y: pitch. z: roll. Returns: R: 3x3. rotation matrix. ''' # x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2]) # x, y, z = angles[0], angles[1], angles[2] y, x, z = angles[0], angles[1], angles[2] # x Rx=np.array([[1, 0, 0], [0, cos(x), -sin(x)], [0, sin(x), cos(x)]]) # y Ry=np.array([[ cos(y), 0, sin(y)], [ 0, 1, 0], [-sin(y), 0, cos(y)]]) # z Rz=np.array([[cos(z), -sin(z), 0], [sin(z), cos(z), 0], [ 0, 0, 1]]) R = Rz.dot(Ry).dot(Rx) return R.astype(np.float32) def tensor2im(input_image, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path)