# ------------------------------------------------------------------------------ # Reference: https://github.com/HRNet/HRNet-Image-Classification # ------------------------------------------------------------------------------ import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.model_zoo as model_zoo __all__ = [ 'hrnet18s', 'hrnet18', 'hrnet32' ] def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, ) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, ) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class HighResolutionModule(nn.Module): def __init__(self, num_branches, blocks, num_blocks, num_inchannels, num_channels, fuse_method, multi_scale_output=True): super(HighResolutionModule, self).__init__() self._check_branches( num_branches, blocks, num_blocks, num_inchannels, num_channels) self.num_inchannels = num_inchannels self.fuse_method = fuse_method self.num_branches = num_branches self.multi_scale_output = multi_scale_output self.branches = self._make_branches( num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(False) def _check_branches(self, num_branches, blocks, num_blocks, num_inchannels, num_channels): if num_branches != len(num_blocks): error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( num_branches, len(num_blocks)) raise ValueError(error_msg) if num_branches != len(num_channels): error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( num_branches, len(num_channels)) raise ValueError(error_msg) if num_branches != len(num_inchannels): error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( num_branches, len(num_inchannels)) raise ValueError(error_msg) def _make_one_branch(self, branch_index, block, num_blocks, num_channels, stride=1): downsample = None if stride != 1 or \ self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.num_inchannels[branch_index], num_channels[branch_index] * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(num_channels[branch_index] * block.expansion), ) layers = [] layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index], stride, downsample)) self.num_inchannels[branch_index] = \ num_channels[branch_index] * block.expansion for i in range(1, num_blocks[branch_index]): layers.append(block(self.num_inchannels[branch_index], num_channels[branch_index])) return nn.Sequential(*layers) def _make_branches(self, num_branches, block, num_blocks, num_channels): branches = [] for i in range(num_branches): branches.append( self._make_one_branch(i, block, num_blocks, num_channels)) return nn.ModuleList(branches) def _make_fuse_layers(self): if self.num_branches == 1: return None num_branches = self.num_branches num_inchannels = self.num_inchannels fuse_layers = [] for i in range(num_branches if self.multi_scale_output else 1): fuse_layer = [] for j in range(num_branches): if j > i: fuse_layer.append(nn.Sequential( nn.Conv2d(num_inchannels[j], num_inchannels[i], 1, 1, 0, bias=False), nn.BatchNorm2d(num_inchannels[i]), nn.Upsample(scale_factor=2**(j-i), mode='nearest'))) elif j == i: fuse_layer.append(None) else: conv3x3s = [] for k in range(i-j): if k == i - j - 1: num_outchannels_conv3x3 = num_inchannels[i] conv3x3s.append(nn.Sequential( nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), nn.BatchNorm2d(num_outchannels_conv3x3))) else: num_outchannels_conv3x3 = num_inchannels[j] conv3x3s.append(nn.Sequential( nn.Conv2d(num_inchannels[j], num_outchannels_conv3x3, 3, 2, 1, bias=False), nn.BatchNorm2d(num_outchannels_conv3x3), nn.ReLU(False))) fuse_layer.append(nn.Sequential(*conv3x3s)) fuse_layers.append(nn.ModuleList(fuse_layer)) return nn.ModuleList(fuse_layers) def get_num_inchannels(self): return self.num_inchannels def forward(self, x): if self.num_branches == 1: return [self.branches[0](x[0])] for i in range(self.num_branches): x[i] = self.branches[i](x[i]) x_fuse = [] for i in range(len(self.fuse_layers)): y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) for j in range(1, self.num_branches): if i == j: y = y + x[j] else: y = y + self.fuse_layers[i][j](x[j]) x_fuse.append(self.relu(y)) return x_fuse class HighResolutionNet(nn.Module): def __init__(self, num_modules, num_branches, block, num_blocks, num_channels, fuse_method, **kwargs): super(HighResolutionNet, self).__init__() self.num_modules = num_modules self.num_branches = num_branches self.block = block self.num_blocks = num_blocks self.num_channels = num_channels self.fuse_method = fuse_method self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # layer1 num_channels, num_blocks = self.num_channels[0][0], self.num_blocks[0][0] self.layer1 = self._make_layer(self.block[0], 64, num_channels, num_blocks) stage1_out_channel = self.block[0].expansion*num_channels # layer2 num_channels, num_blocks = self.num_channels[1], self.num_blocks[1] num_channels = [ num_channels[i] * self.block[1].expansion for i in range(len(num_channels))] self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) self.stage2, pre_stage_channels = self._make_stage(1, num_channels) # layer3 num_channels, num_blocks = self.num_channels[2], self.num_blocks[2] num_channels = [ num_channels[i] * self.block[2].expansion for i in range(len(num_channels))] self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage3, pre_stage_channels = self._make_stage(2, num_channels) # layer4 num_channels, num_blocks = self.num_channels[3], self.num_blocks[3] num_channels = [ num_channels[i] * self.block[3].expansion for i in range(len(num_channels))] self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) self.stage4, pre_stage_channels = self._make_stage(3, num_channels, multi_scale_output=True) self._out_channels = sum(pre_stage_channels) def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): num_branches_cur = len(num_channels_cur_layer) num_branches_pre = len(num_channels_pre_layer) transition_layers = [] for i in range(num_branches_cur): if i < num_branches_pre: if num_channels_cur_layer[i] != num_channels_pre_layer[i]: transition_layers.append(nn.Sequential( nn.Conv2d(num_channels_pre_layer[i], num_channels_cur_layer[i], 3, 1, 1, bias=False), nn.BatchNorm2d( num_channels_cur_layer[i], ), nn.ReLU(inplace=True))) else: transition_layers.append(None) else: conv3x3s = [] for j in range(i+1-num_branches_pre): inchannels = num_channels_pre_layer[-1] outchannels = num_channels_cur_layer[i] \ if j == i-num_branches_pre else inchannels conv3x3s.append(nn.Sequential( nn.Conv2d( inchannels, outchannels, 3, 2, 1, bias=False), nn.BatchNorm2d(outchannels, ), nn.ReLU(inplace=True))) transition_layers.append(nn.Sequential(*conv3x3s)) return nn.ModuleList(transition_layers) def _make_layer(self, block, inplanes, planes, blocks, stride=1): downsample = None if stride != 1 or inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion, ), ) layers = [] layers.append(block(inplanes, planes, stride, downsample)) inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(inplanes, planes)) return nn.Sequential(*layers) def _make_stage(self, stage_index, in_channels, multi_scale_output=True): num_modules = self.num_modules[stage_index] num_branches = self.num_branches[stage_index] num_blocks = self.num_blocks[stage_index] num_channels = self.num_channels[stage_index] block = self.block[stage_index] fuse_method = self.fuse_method[stage_index] modules = [] for i in range(num_modules): # multi_scale_output is only used last module if not multi_scale_output and i == num_modules - 1: reset_multi_scale_output = False else: reset_multi_scale_output = True modules.append( HighResolutionModule(num_branches, block, num_blocks, in_channels, num_channels, fuse_method, reset_multi_scale_output) ) in_channels = modules[-1].get_num_inchannels() return nn.Sequential(*modules), in_channels def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.layer1(x) x_list = [] for i in range(self.num_branches[1]): if self.transition1[i] is not None: x_list.append(self.transition1[i](x)) else: x_list.append(x) y_list = self.stage2(x_list) x_list = [] for i in range(self.num_branches[2]): if self.transition2[i] is not None: x_list.append(self.transition2[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage3(x_list) x_list = [] for i in range(self.num_branches[3]): if self.transition3[i] is not None: x_list.append(self.transition3[i](y_list[-1])) else: x_list.append(y_list[i]) y_list = self.stage4(x_list) kwargs = { 'size': tuple(y_list[0].shape[-2:]), 'mode': 'bilinear', 'align_corners': False, } return torch.cat([F.interpolate(y,**kwargs) for y in y_list], 1) def hrnet18s(pretrained=True, **kwargs): model = HighResolutionNet( num_modules = [1, 1, 3, 2], num_branches = [1, 2, 3, 4], block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], num_blocks = [(2,), (2,2), (2,2,2), (2,2,2,2)], num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], **kwargs ) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['hrnet_w18s']), strict=False) return model def hrnet18(pretrained=False, **kwargs): model = HighResolutionNet( num_modules = [1, 1, 4, 3], num_branches = [1, 2, 3, 4], block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], **kwargs ) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['hrnet18']), strict=False) return model def hrnet32(pretrained=False, **kwargs): model = HighResolutionNet( num_modules = [1, 1, 4, 3], num_branches = [1, 2, 3, 4], block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], num_channels = [(64,), (32,64), (32,64,128), (32,64,128,256)], fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], **kwargs ) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['hrnet32']), strict=False) return model class BinaryHeadBlock(nn.Module): """BinaryHeadBlock """ def __init__(self, in_channels, proj_channels, out_channels, **kwargs): super(BinaryHeadBlock, self).__init__() self.layers = nn.Sequential( nn.Conv2d(in_channels, proj_channels, 1, bias=False), nn.BatchNorm2d(proj_channels), nn.ReLU(inplace=True), nn.Conv2d(proj_channels, out_channels*2, 1, bias=False), ) def forward(self, input): N, C, H, W = input.shape return self.layers(input).view(N, 2, -1, H, W) def heatmap2coord(heatmap, topk=9): N, C, H, W = heatmap.shape score, index = heatmap.view(N,C,1,-1).topk(topk, dim=-1) coord = torch.cat([index%W, index//W], dim=2) return (coord*F.softmax(score, dim=-1)).sum(-1) class BinaryHeatmap2Coordinate(nn.Module): """BinaryHeatmap2Coordinate """ def __init__(self, stride=4.0, topk=5, **kwargs): super(BinaryHeatmap2Coordinate, self).__init__() self.topk = topk self.stride = stride def forward(self, input): return self.stride * heatmap2coord(input[:,1,...], self.topk) def __repr__(self): format_string = self.__class__.__name__ + '(' format_string += 'topk={}, '.format(self.topk) format_string += 'stride={}'.format(self.stride) format_string += ')' return format_string class HeatmapHead(nn.Module): """HeatmapHead """ def __init__(self): super(HeatmapHead, self).__init__() self.decoder = BinaryHeatmap2Coordinate( topk=9, stride=4.0, ) self.head = BinaryHeadBlock( in_channels=270, proj_channels=270, out_channels=98, ) def forward(self, input): heatmap = self.head(input) ldmk = self.decoder(heatmap) return heatmap[:,1,...], ldmk class LandmarkDetector(nn.Module): def __init__(self, model_path): super(LandmarkDetector, self).__init__() self.backbone = HighResolutionNet( num_modules = [1, 1, 4, 3], num_branches = [1, 2, 3, 4], block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'] ) self.heatmap_head = HeatmapHead() self.load_state_dict(torch.load(model_path)) def forward(self, img): heatmap, landmark = self.heatmap_head(self.backbone(img)) return heatmap, landmark