# PD-FGC motion encoder, modified from https://github.com/Dorniwang/PD-FGC-inference import torch import torch.nn as nn import torch.nn.functional as F def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias) class ConvBlock(nn.Module): def __init__(self, in_planes, out_planes): super(ConvBlock, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = conv3x3(in_planes, int(out_planes / 2)) self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4)) self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4)) if in_planes != out_planes: self.downsample = nn.Sequential( nn.BatchNorm2d(in_planes), nn.ReLU(True), nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False), ) else: self.downsample = None def forward(self, x): residual = x out1 = self.bn1(x) out1 = F.relu(out1, True) out1 = self.conv1(out1) out2 = self.bn2(out1) out2 = F.relu(out2, True) out2 = self.conv2(out2) out3 = self.bn3(out2) out3 = F.relu(out3, True) out3 = self.conv3(out3) out3 = torch.cat((out1, out2, out3), 1) if self.downsample is not None: residual = self.downsample(residual) out3 += residual return out3 class HourGlass(nn.Module): def __init__(self, num_modules, depth, num_features): super(HourGlass, self).__init__() self.num_modules = num_modules self.depth = depth self.features = num_features self.dropout = nn.Dropout(0.5) self._generate_network(self.depth) def _generate_network(self, level): self.add_module('b1_' + str(level), ConvBlock(256, 256)) self.add_module('b2_' + str(level), ConvBlock(256, 256)) if level > 1: self._generate_network(level - 1) else: self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) self.add_module('b3_' + str(level), ConvBlock(256, 256)) def _forward(self, level, inp): # Upper branch up1 = inp up1 = self._modules['b1_' + str(level)](up1) up1 = self.dropout(up1) # Lower branch low1 = F.max_pool2d(inp, 2, stride=2) low1 = self._modules['b2_' + str(level)](low1) if level > 1: low2 = self._forward(level - 1, low1) else: low2 = low1 low2 = self._modules['b2_plus_' + str(level)](low2) low3 = low2 low3 = self._modules['b3_' + str(level)](low3) up1size = up1.size() rescale_size = (up1size[2], up1size[3]) up2 = F.upsample(low3, size=rescale_size, mode='bilinear') return up1 + up2 def forward(self, x): return self._forward(self.depth, x) class FAN_use(nn.Module): def __init__(self): super(FAN_use, self).__init__() self.num_modules = 1 # Base part self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3) self.bn1 = nn.BatchNorm2d(64) self.conv2 = ConvBlock(64, 128) self.conv3 = ConvBlock(128, 128) self.conv4 = ConvBlock(128, 256) # Stacking part hg_module = 0 self.add_module('m' + str(hg_module), HourGlass(1, 4, 256)) self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) self.add_module('conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('l' + str(hg_module), nn.Conv2d(256, 68, kernel_size=1, stride=1, padding=0)) self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) if hg_module < self.num_modules - 1: self.add_module( 'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) self.add_module('al' + str(hg_module), nn.Conv2d(68, 256, kernel_size=1, stride=1, padding=0)) self.avgpool = nn.MaxPool2d((2, 2), 2) self.conv6 = nn.Conv2d(68, 1, 3, 2, 1) self.fc = nn.Linear(28 * 28, 512) self.bn5 = nn.BatchNorm2d(68) self.relu = nn.ReLU(True) def forward(self, x): x = F.relu(self.bn1(self.conv1(x)), True) x = F.max_pool2d(self.conv2(x), 2) x = self.conv3(x) x = self.conv4(x) previous = x i = 0 hg = self._modules['m' + str(i)](previous) ll = hg ll = self._modules['top_m_' + str(i)](ll) ll = self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)) tmp_out = self._modules['l' + str(i)](F.relu(ll)) net = self.relu(self.bn5(tmp_out)) net = self.conv6(net) net = net.view(-1, net.shape[-2] * net.shape[-1]) net = self.relu(net) net = self.fc(net) return net