Spaces:
Running
on
Zero
Running
on
Zero
刘虹雨
commited on
Commit
·
af31c35
1
Parent(s):
42d9724
update code
Browse files
app.py
CHANGED
|
@@ -56,19 +56,7 @@ else:
|
|
| 56 |
|
| 57 |
import torch
|
| 58 |
|
| 59 |
-
|
| 60 |
-
torch.cuda.set_device(0)
|
| 61 |
-
|
| 62 |
-
# 显式初始化 CUDA(通常是可选的,但在多线程中有助于避免问题)
|
| 63 |
-
torch.cuda.init()
|
| 64 |
-
|
| 65 |
-
# 测试
|
| 66 |
-
print("CUDA available:", torch.cuda.is_available())
|
| 67 |
-
print("Current device:", torch.cuda.current_device())
|
| 68 |
-
print("Device name:", torch.cuda.get_device_name(0))
|
| 69 |
-
print("CUDA_HOME =", os.environ.get("CUDA_HOME"))
|
| 70 |
-
from torch.utils.cpp_extension import CUDA_HOME
|
| 71 |
-
print("CUDA_HOME from PyTorch:", CUDA_HOME)
|
| 72 |
import argparse
|
| 73 |
import json
|
| 74 |
import random
|
|
@@ -264,6 +252,7 @@ def generate_samples(DiT_model, cfg_scale, sample_steps, clip_feature, dino_feat
|
|
| 264 |
|
| 265 |
|
| 266 |
def load_motion_aware_render_model(ckpt_path, device):
|
|
|
|
| 267 |
"""Load the motion-aware render model from a checkpoint."""
|
| 268 |
logging.info("Loading motion-aware render model...")
|
| 269 |
with dnnlib.util.open_url(ckpt_path, 'rb') as f:
|
|
@@ -407,13 +396,14 @@ def images_to_video(image_folder, output_video, fps=30):
|
|
| 407 |
|
| 408 |
print(f"✅ High-quality MP4 video has been generated: {output_video}")
|
| 409 |
|
| 410 |
-
|
| 411 |
def model_define():
|
| 412 |
args = get_args()
|
| 413 |
set_env(args.seed)
|
| 414 |
input_process_model = Process(cfg)
|
| 415 |
|
| 416 |
-
device = "cuda"
|
|
|
|
| 417 |
weight_dtype = torch.float32
|
| 418 |
logging.info(f"Running inference with {weight_dtype}")
|
| 419 |
|
|
@@ -450,8 +440,18 @@ def model_define():
|
|
| 450 |
base_coff = torch.from_numpy(base_coff).float()
|
| 451 |
Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
|
| 452 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
return motion_aware_render_model, sample_steps, DiT_model, \
|
| 454 |
-
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, Faceverse, device, input_process_model
|
| 455 |
|
| 456 |
|
| 457 |
def duplicate_batch(tensor, batch_size=2):
|
|
@@ -463,6 +463,8 @@ def duplicate_batch(tensor, batch_size=2):
|
|
| 463 |
@torch.inference_mode()
|
| 464 |
@spaces.GPU(duration=200)
|
| 465 |
def avatar_generation(items, save_path_base, video_path_input, source_type, is_styled, styled_img):
|
|
|
|
|
|
|
| 466 |
"""
|
| 467 |
Generate avatars from input images.
|
| 468 |
|
|
@@ -650,7 +652,7 @@ def process_image(input_image, source_type, is_style, save_dir):
|
|
| 650 |
imge_dir = os.path.join(save_dir, 'processed_img/dataset/images512x512/input_image', img_name)
|
| 651 |
return imge_dir, source_type # 这里替换成 处理用户上传图片的逻辑
|
| 652 |
|
| 653 |
-
|
| 654 |
def style_transfer(processed_image, style_prompt, cfg, strength, save_base):
|
| 655 |
"""
|
| 656 |
🎭 这个函数用于风格转换
|
|
@@ -1001,15 +1003,7 @@ if __name__ == '__main__':
|
|
| 1001 |
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
|
| 1002 |
example_img_names = os.listdir(image_folder)
|
| 1003 |
render_model, sample_steps, DiT_model, \
|
| 1004 |
-
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, Faceverse, device, input_process_model = model_define()
|
| 1005 |
-
|
| 1006 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 1007 |
-
controlnet_path, torch_dtype=torch.float16
|
| 1008 |
-
)
|
| 1009 |
-
sd_path = './pretrained_model/sd21'
|
| 1010 |
-
pipeline_sd = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 1011 |
-
sd_path, torch_dtype=torch.float16,
|
| 1012 |
-
use_safetensors=True, controlnet=controlnet, variant="fp16"
|
| 1013 |
-
).to(device)
|
| 1014 |
demo_cam = False
|
| 1015 |
launch_gradio_app()
|
|
|
|
| 56 |
|
| 57 |
import torch
|
| 58 |
|
| 59 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
import argparse
|
| 61 |
import json
|
| 62 |
import random
|
|
|
|
| 252 |
|
| 253 |
|
| 254 |
def load_motion_aware_render_model(ckpt_path, device):
|
| 255 |
+
|
| 256 |
"""Load the motion-aware render model from a checkpoint."""
|
| 257 |
logging.info("Loading motion-aware render model...")
|
| 258 |
with dnnlib.util.open_url(ckpt_path, 'rb') as f:
|
|
|
|
| 396 |
|
| 397 |
print(f"✅ High-quality MP4 video has been generated: {output_video}")
|
| 398 |
|
| 399 |
+
@spaces.GPU(duration=100)
|
| 400 |
def model_define():
|
| 401 |
args = get_args()
|
| 402 |
set_env(args.seed)
|
| 403 |
input_process_model = Process(cfg)
|
| 404 |
|
| 405 |
+
device = "cuda"
|
| 406 |
+
|
| 407 |
weight_dtype = torch.float32
|
| 408 |
logging.info(f"Running inference with {weight_dtype}")
|
| 409 |
|
|
|
|
| 440 |
base_coff = torch.from_numpy(base_coff).float()
|
| 441 |
Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
|
| 442 |
|
| 443 |
+
controlnet_path = './pretrained_model/control'
|
| 444 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 445 |
+
controlnet_path, torch_dtype=torch.float16
|
| 446 |
+
)
|
| 447 |
+
sd_path = './pretrained_model/sd21'
|
| 448 |
+
pipeline_sd = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
| 449 |
+
sd_path, torch_dtype=torch.float16,
|
| 450 |
+
use_safetensors=True, controlnet=controlnet, variant="fp16"
|
| 451 |
+
).to(device)
|
| 452 |
+
|
| 453 |
return motion_aware_render_model, sample_steps, DiT_model, \
|
| 454 |
+
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, Faceverse, device, input_process_model,pipeline_sd
|
| 455 |
|
| 456 |
|
| 457 |
def duplicate_batch(tensor, batch_size=2):
|
|
|
|
| 463 |
@torch.inference_mode()
|
| 464 |
@spaces.GPU(duration=200)
|
| 465 |
def avatar_generation(items, save_path_base, video_path_input, source_type, is_styled, styled_img):
|
| 466 |
+
|
| 467 |
+
|
| 468 |
"""
|
| 469 |
Generate avatars from input images.
|
| 470 |
|
|
|
|
| 652 |
imge_dir = os.path.join(save_dir, 'processed_img/dataset/images512x512/input_image', img_name)
|
| 653 |
return imge_dir, source_type # 这里替换成 处理用户上传图片的逻辑
|
| 654 |
|
| 655 |
+
@spaces.GPU(duration=100)
|
| 656 |
def style_transfer(processed_image, style_prompt, cfg, strength, save_base):
|
| 657 |
"""
|
| 658 |
🎭 这个函数用于风格转换
|
|
|
|
| 1003 |
image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
|
| 1004 |
example_img_names = os.listdir(image_folder)
|
| 1005 |
render_model, sample_steps, DiT_model, \
|
| 1006 |
+
vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, Faceverse, device, input_process_model, pipeline_sd = model_define()
|
| 1007 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1008 |
demo_cam = False
|
| 1009 |
launch_gradio_app()
|