刘虹雨 commited on
Commit
23f9e19
·
1 Parent(s): cd8a54f

update code

Browse files
Files changed (1) hide show
  1. app.py +10 -9
app.py CHANGED
@@ -433,15 +433,10 @@ def model_define():
433
  # Load average latent vector
434
  ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]
435
 
436
- # Set up face verse for amimation
437
- base_coff = np.load(
438
- 'pretrained_model/temp.npy').astype(
439
- np.float32)
440
- base_coff = torch.from_numpy(base_coff).float()
441
- Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
442
 
443
  return motion_aware_render_model, sample_steps, DiT_model, \
444
- vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, Faceverse, device, input_process_model
445
 
446
 
447
  def duplicate_batch(tensor, batch_size=2):
@@ -482,9 +477,15 @@ def avatar_generation(items, save_path_base, video_path_input, source_type, is_s
482
  image_encoder.to(device)
483
  vae_triplane.to(device)
484
  dinov2.to(device)
485
- Faceverse.to(device)
486
  ws_avg = ws_avg.to(device)
487
  DiT_model = DiT_model.to(device)
 
 
 
 
 
 
 
488
  if source_type == 'example':
489
  input_img_fvid = './demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs'
490
  input_img_motion = './demo_data/source_img/img_generate_different_domain/motions/demo_imgs'
@@ -999,7 +1000,7 @@ if __name__ == '__main__':
999
  image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
1000
  example_img_names = os.listdir(image_folder)
1001
  render_model, sample_steps, DiT_model, \
1002
- vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, Faceverse, device, input_process_model = model_define()
1003
  controlnet_path = './pretrained_model/control'
1004
  controlnet = ControlNetModel.from_pretrained(
1005
  controlnet_path, torch_dtype=torch.float16
 
433
  # Load average latent vector
434
  ws_avg = torch.load(default_config.ws_avg_pkl).to(device)[0]
435
 
436
+
 
 
 
 
 
437
 
438
  return motion_aware_render_model, sample_steps, DiT_model, \
439
+ vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, triplane_std, triplane_mean, ws_avg, device, input_process_model
440
 
441
 
442
  def duplicate_batch(tensor, batch_size=2):
 
477
  image_encoder.to(device)
478
  vae_triplane.to(device)
479
  dinov2.to(device)
 
480
  ws_avg = ws_avg.to(device)
481
  DiT_model = DiT_model.to(device)
482
+ # Set up face verse for amimation
483
+ base_coff = np.load(
484
+ 'pretrained_model/temp.npy').astype(
485
+ np.float32)
486
+ base_coff = torch.from_numpy(base_coff).float()
487
+ Faceverse = Faceverse_manager(device=device, base_coeff=base_coff)
488
+
489
  if source_type == 'example':
490
  input_img_fvid = './demo_data/source_img/img_generate_different_domain/coeffs/demo_imgs'
491
  input_img_motion = './demo_data/source_img/img_generate_different_domain/motions/demo_imgs'
 
1000
  image_folder = "./demo_data/source_img/img_generate_different_domain/images512x512/demo_imgs"
1001
  example_img_names = os.listdir(image_folder)
1002
  render_model, sample_steps, DiT_model, \
1003
+ vae_triplane, image_encoder, dinov2, dino_img_processor, clip_image_processor, std, mean, ws_avg, device, input_process_model = model_define()
1004
  controlnet_path = './pretrained_model/control'
1005
  controlnet = ControlNetModel.from_pretrained(
1006
  controlnet_path, torch_dtype=torch.float16