AvatarArtist / recon /training /discriminator /dual_discriminator_next3D.py
刘虹雨
update
8ed2f16
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Discriminator architectures from the paper
"Efficient Geometry-aware 3D Generative Adversarial Networks"."""
import numpy as np
import torch
from torch_utils import persistence, misc
from torch_utils.ops import upfirdn2d
from recon.models.stylegannext3D.networks_stylegan2 import DiscriminatorBlock, MappingNetwork, DiscriminatorEpilogue
from einops import rearrange
@persistence.persistent_class
class SingleDiscriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
sr_upsample_factor = 1, # Ignored for SingleDiscriminator
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
def forward(self, img, c, update_emas=False, **block_kwargs):
img = img['image']
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
def filtered_resizing(image_orig_tensor, size, f, filter_mode='antialiased'):
if filter_mode == 'antialiased':
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True)
elif filter_mode == 'classic':
ada_filtered_64 = upfirdn2d.upsample2d(image_orig_tensor, f, up=2)
ada_filtered_64 = torch.nn.functional.interpolate(ada_filtered_64, size=(size * 2 + 2, size * 2 + 2), mode='bilinear', align_corners=False)
ada_filtered_64 = upfirdn2d.downsample2d(ada_filtered_64, f, down=2, flip_filter=True, padding=-1)
elif filter_mode == 'none':
ada_filtered_64 = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False)
elif type(filter_mode) == float:
assert 0 < filter_mode < 1
filtered = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=True)
aliased = torch.nn.functional.interpolate(image_orig_tensor, size=(size, size), mode='bilinear', align_corners=False, antialias=False)
ada_filtered_64 = (1 - filter_mode) * aliased + (filter_mode) * filtered
return ada_filtered_64
#----------------------------------------------------------------------------
@persistence.persistent_class
class DualDiscriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
disc_c_noise = 0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
# img_channels *= 3 # 额外使用lms_contour作为condition
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
self.disc_c_noise = disc_c_noise
def forward(self, img, c, update_emas=False, out_layers=None, **block_kwargs):
image_raw = filtered_resizing(img['image'], size=img['image_sr'].shape[-1], f=self.resample_filter)
img = torch.cat([img['image_sr'], image_raw], 1)
_ = update_emas # unused
x = None
output, count = [], 0
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
if out_layers is not None and count in out_layers:
output.append(x)
count += 1
if c is None:
return output
cmap = None
if self.c_dim > 0:
c = c[:, :self.c_dim]
if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x if out_layers is None else [x, output]
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class DummyDualDiscriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
img_channels *= 2
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
self.raw_fade = 1
def forward(self, img, c, update_emas=False, **block_kwargs):
self.raw_fade = max(0, self.raw_fade - 1/(500000/32))
image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter) * self.raw_fade
img = torch.cat([img['image'], image_raw], 1)
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
return x
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class VideoDiscriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
disc_c_noise = 0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
img_channels = img_channels * 2 + 1
# c_dim = c_dim * 2
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim * 2, w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
self.disc_c_noise = disc_c_noise
def forward(self, img, Ts, c, return_input=False, update_emas=False, **block_kwargs):
# image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter)
# NOTE: concat images and timestamp here
# Ts: [num_vid, 2] or [num_vid, 2, C]
# img:[num_vid*2, C, H, W]
# c: [num_vid, 2, C]
timesteps = Ts.shape[1]
_, _, h, w = img['image'].shape
img = torch.cat([rearrange(img['image'], "(b t) c h w -> b (t c) h w", t=timesteps), (Ts[:, 1]-Ts[:, 0]).view(-1, 1, 1, 1).repeat(1, 1, h, w)], 1)
# img = rearrange(img['image'], "(b t) c h w -> b (t c) h w", t=timesteps)
if not self.img_resolution == h:
img = torch.nn.functional.interpolate(img, size=(self.img_resolution, self.img_resolution), mode='bilinear', align_corners=False, antialias=True)
if return_input:
inp = img
c = c[..., :self.c_dim]
# NOTE: reshape cameras
# c = rearrange(c, "(b t) c -> b (t c)", t=timesteps)
c = rearrange(c, "b t c -> b (t c)", t=timesteps)
# c = torch.cat([c, Ts[:, 1]-Ts[:, 0]], dim=-1)
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
if return_input:
return x, inp
return x, None
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class FusionVideoDiscriminator(torch.nn.Module):
def __init__(self,
c_dim, # Conditioning label (C) dimensionality.
img_resolution, # Input resolution.
img_channels, # Number of input color channels.
architecture = 'resnet', # Architecture: 'orig', 'skip', 'resnet'.
channel_base = 32768, # Overall multiplier for the number of channels.
channel_max = 512, # Maximum number of channels in any layer.
num_fp16_res = 4, # Use FP16 for the N highest resolutions.
conv_clamp = 256, # Clamp the output of convolution layers to +-X, None = disable clamping.
cmap_dim = None, # Dimensionality of mapped conditioning label, None = default.
disc_c_noise = 0, # Corrupt camera parameters with X std dev of noise before disc. pose conditioning.
block_kwargs = {}, # Arguments for DiscriminatorBlock.
mapping_kwargs = {}, # Arguments for MappingNetwork.
epilogue_kwargs = {}, # Arguments for DiscriminatorEpilogue.
):
super().__init__()
# img_channels = img_channels * 2 + 1
# c_dim = c_dim * 2
self.c_dim = c_dim
self.img_resolution = img_resolution
self.img_resolution_log2 = int(np.log2(img_resolution))
self.img_channels = img_channels
self.block_resolutions = [2 ** i for i in range(self.img_resolution_log2, 2, -1)]
channels_dict = {res: min(channel_base // res, channel_max) for res in self.block_resolutions + [4]}
fp16_resolution = max(2 ** (self.img_resolution_log2 + 1 - num_fp16_res), 8)
if cmap_dim is None:
cmap_dim = channels_dict[4]
if c_dim == 0:
cmap_dim = 0
self.concat_res = 16
self.num_frames_div_factor = 2
self.num_frames_per_video = 2
self.time_encoder = TemporalDifferenceEncoder(max_num_frames=32, num_frames_per_video=self.num_frames_per_video)
common_kwargs = dict(img_channels=img_channels, architecture=architecture, conv_clamp=conv_clamp)
cur_layer_idx = 0
for res in self.block_resolutions:
in_channels = channels_dict[res] if res < img_resolution else 0
tmp_channels = channels_dict[res]
out_channels = channels_dict[res // 2]
if res // 2 == self.concat_res:
out_channels = out_channels // self.num_frames_div_factor
if res == self.concat_res:
in_channels = (in_channels // self.num_frames_div_factor) * self.num_frames_per_video
use_fp16 = (res >= fp16_resolution)
block = DiscriminatorBlock(in_channels, tmp_channels, out_channels, resolution=res,
first_layer_idx=cur_layer_idx, use_fp16=use_fp16, **block_kwargs, **common_kwargs)
setattr(self, f'b{res}', block)
cur_layer_idx += block.num_layers
if c_dim > 0:
self.mapping = MappingNetwork(z_dim=0, c_dim=c_dim * self.num_frames_per_video + self.time_encoder.get_dim(), w_dim=cmap_dim, num_ws=None, w_avg_beta=None, **mapping_kwargs)
self.b4 = DiscriminatorEpilogue(channels_dict[4], cmap_dim=cmap_dim, resolution=4, **epilogue_kwargs, **common_kwargs)
self.register_buffer('resample_filter', upfirdn2d.setup_filter([1,3,3,1]))
self.disc_c_noise = disc_c_noise
def forward(self, img, Ts, c, return_input=False, update_emas=False, **block_kwargs):
# image_raw = filtered_resizing(img['image_raw'], size=img['image'].shape[-1], f=self.resample_filter)
# NOTE: concat images and timestamp here
# Ts: [num_vid, 2] or [num_vid, 2, C]
# img:[num_vid*2, C, H, W]
# c: [num_vid, 2, C]
timesteps = Ts.shape[1]
_, _, h, w = img['image'].shape
assert len(img['image']) == Ts.shape[0] * Ts.shape[1]
img = img['image']
# img = torch.cat([rearrange(img['image'], "(b t) c h w -> b (t c) h w", t=timesteps), (Ts[:, 1]-Ts[:, 0]).view(-1, 1, 1, 1).repeat(1, 1, h, w)], 1)
# img = rearrange(img['image'], "(b t) c h w -> b (t c) h w", t=timesteps)
if not self.img_resolution == h:
img = torch.nn.functional.interpolate(img, size=(self.img_resolution, self.img_resolution), mode='bilinear', align_corners=False, antialias=True)
if return_input:
inp = img
c = c[..., :self.c_dim]
# NOTE: reshape cameras
c = rearrange(c, "b t c -> b (t c)", t=timesteps)
# c = torch.cat([c, Ts[:, 1]-Ts[:, 0]], dim=-1)
# Encoding the time distances
t_embs = self.time_encoder(Ts) # [batch_size, t_dim]
c = torch.cat([c, t_embs], dim=1) # [batch_size, c_dim + t_dim]
_ = update_emas # unused
x = None
for res in self.block_resolutions:
block = getattr(self, f'b{res}')
if res == self.concat_res:
# Concatenating the frames
x = rearrange(x, "(b t) c h w -> b t c h w", t=timesteps)
# x = x.view(-1, self.num_frames_per_video, *x.shape[1:]) # [batch_size, num_frames, c, h, w]
x = x. view(x.shape[0], -1, *x.shape[3:]) # [batch_size, num_frames * c, h, w]
x, img = block(x, img, **block_kwargs)
cmap = None
if self.c_dim > 0:
if self.disc_c_noise > 0: c += torch.randn_like(c) * c.std(0) * self.disc_c_noise
cmap = self.mapping(None, c)
x = self.b4(x, img, cmap)
if return_input:
return x, inp
return x, None
def extra_repr(self):
return f'c_dim={self.c_dim:d}, img_resolution={self.img_resolution:d}, img_channels={self.img_channels:d}'
#----------------------------------------------------------------------------
@persistence.persistent_class
class FixedTimeEncoder(torch.nn.Module):
def __init__(self,
max_num_frames: int, # Maximum T size
skip_small_t_freqs: int=0, # How many high frequencies we should skip
):
super().__init__()
assert max_num_frames >= 1, f"Wrong max_num_frames: {max_num_frames}"
fourier_coefs = construct_log_spaced_freqs(max_num_frames, skip_small_t_freqs=skip_small_t_freqs)
self.register_buffer('fourier_coefs', fourier_coefs) # [1, num_fourier_feats]
def get_dim(self) -> int:
return self.fourier_coefs.shape[1] * 2
def forward(self, t: torch.Tensor) -> torch.Tensor:
assert t.ndim == 2, f"Wrong shape: {t.shape}"
t = t.view(-1).float() # [batch_size * num_frames]
fourier_raw_embs = self.fourier_coefs * t.unsqueeze(1) # [bf, num_fourier_feats]
fourier_embs = torch.cat([
fourier_raw_embs.sin(),
fourier_raw_embs.cos(),
], dim=1) # [bf, num_fourier_feats * 2]
return fourier_embs
#----------------------------------------------------------------------------
class TemporalDifferenceEncoder(torch.nn.Module):
def __init__(self, max_num_frames, num_frames_per_video, sampling_type='random'):
super().__init__()
self.num_frames_per_video = num_frames_per_video
self.sampling_type = sampling_type
if self.num_frames_per_video > 1:
self.d = 256
self.const_embed = torch.nn.Embedding(max_num_frames, self.d)
self.time_encoder = FixedTimeEncoder(
max_num_frames,
skip_small_t_freqs=0)
def get_dim(self) -> int:
if self.num_frames_per_video == 1:
return 1
else:
if self.sampling_type == 'uniform':
return self.d + self.time_encoder.get_dim()
else:
return (self.d + self.time_encoder.get_dim()) * (self.num_frames_per_video - 1)
def forward(self, t: torch.Tensor) -> torch.Tensor:
misc.assert_shape(t, [None, self.num_frames_per_video])
batch_size = t.shape[0]
if self.num_frames_per_video == 1:
out = torch.zeros(len(t), 1, device=t.device)
else:
if self.sampling_type == 'uniform':
num_diffs_to_use = 1
t_diffs = t[:, 1] - t[:, 0] # [batch_size]
else:
num_diffs_to_use = self.num_frames_per_video - 1
t_diffs = (t[:, 1:] - t[:, :-1]).view(-1) # [batch_size * (num_frames - 1)]
# Note: float => round => long is necessary when it's originally long
const_embs = self.const_embed(t_diffs.float().round().long()) # [batch_size * num_diffs_to_use, d]
fourier_embs = self.time_encoder(t_diffs.unsqueeze(1)) # [batch_size * num_diffs_to_use, num_fourier_feats]
out = torch.cat([const_embs, fourier_embs], dim=1) # [batch_size * num_diffs_to_use, d + num_fourier_feats]
out = out.view(batch_size, num_diffs_to_use, -1).view(batch_size, -1) # [batch_size, num_diffs_to_use * (d + num_fourier_feats)]
return out
def construct_log_spaced_freqs(max_num_frames: int, skip_small_t_freqs: int=0):
time_resolution = 2 ** np.ceil(np.log2(max_num_frames))
num_fourier_feats = np.ceil(np.log2(time_resolution)).astype(int)
powers = torch.tensor([2]).repeat(num_fourier_feats).pow(torch.arange(num_fourier_feats)) # [num_fourier_feats]
powers = powers[:len(powers) - skip_small_t_freqs] # [num_fourier_feats]
fourier_coefs = powers.unsqueeze(0).float() * np.pi # [1, num_fourier_feats]
return fourier_coefs / time_resolution