Spaces:
Running
on
Zero
Running
on
Zero
# ------------------------------------------------------------------------------ | |
# Reference: https://github.com/HRNet/HRNet-Image-Classification | |
# ------------------------------------------------------------------------------ | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.model_zoo as model_zoo | |
__all__ = [ 'hrnet18s', 'hrnet18', 'hrnet32' ] | |
def conv3x3(in_planes, out_planes, stride=1): | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes, ) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes, ) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, | |
bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class HighResolutionModule(nn.Module): | |
def __init__(self, num_branches, blocks, num_blocks, num_inchannels, | |
num_channels, fuse_method, multi_scale_output=True): | |
super(HighResolutionModule, self).__init__() | |
self._check_branches( | |
num_branches, blocks, num_blocks, num_inchannels, num_channels) | |
self.num_inchannels = num_inchannels | |
self.fuse_method = fuse_method | |
self.num_branches = num_branches | |
self.multi_scale_output = multi_scale_output | |
self.branches = self._make_branches( | |
num_branches, blocks, num_blocks, num_channels) | |
self.fuse_layers = self._make_fuse_layers() | |
self.relu = nn.ReLU(False) | |
def _check_branches(self, num_branches, blocks, num_blocks, | |
num_inchannels, num_channels): | |
if num_branches != len(num_blocks): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format( | |
num_branches, len(num_blocks)) | |
raise ValueError(error_msg) | |
if num_branches != len(num_channels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format( | |
num_branches, len(num_channels)) | |
raise ValueError(error_msg) | |
if num_branches != len(num_inchannels): | |
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format( | |
num_branches, len(num_inchannels)) | |
raise ValueError(error_msg) | |
def _make_one_branch(self, branch_index, block, num_blocks, num_channels, | |
stride=1): | |
downsample = None | |
if stride != 1 or \ | |
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.num_inchannels[branch_index], | |
num_channels[branch_index] * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(num_channels[branch_index] * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index], stride, downsample)) | |
self.num_inchannels[branch_index] = \ | |
num_channels[branch_index] * block.expansion | |
for i in range(1, num_blocks[branch_index]): | |
layers.append(block(self.num_inchannels[branch_index], | |
num_channels[branch_index])) | |
return nn.Sequential(*layers) | |
def _make_branches(self, num_branches, block, num_blocks, num_channels): | |
branches = [] | |
for i in range(num_branches): | |
branches.append( | |
self._make_one_branch(i, block, num_blocks, num_channels)) | |
return nn.ModuleList(branches) | |
def _make_fuse_layers(self): | |
if self.num_branches == 1: | |
return None | |
num_branches = self.num_branches | |
num_inchannels = self.num_inchannels | |
fuse_layers = [] | |
for i in range(num_branches if self.multi_scale_output else 1): | |
fuse_layer = [] | |
for j in range(num_branches): | |
if j > i: | |
fuse_layer.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_inchannels[i], | |
1, | |
1, | |
0, | |
bias=False), | |
nn.BatchNorm2d(num_inchannels[i]), | |
nn.Upsample(scale_factor=2**(j-i), mode='nearest'))) | |
elif j == i: | |
fuse_layer.append(None) | |
else: | |
conv3x3s = [] | |
for k in range(i-j): | |
if k == i - j - 1: | |
num_outchannels_conv3x3 = num_inchannels[i] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False), | |
nn.BatchNorm2d(num_outchannels_conv3x3))) | |
else: | |
num_outchannels_conv3x3 = num_inchannels[j] | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d(num_inchannels[j], | |
num_outchannels_conv3x3, | |
3, 2, 1, bias=False), | |
nn.BatchNorm2d(num_outchannels_conv3x3), | |
nn.ReLU(False))) | |
fuse_layer.append(nn.Sequential(*conv3x3s)) | |
fuse_layers.append(nn.ModuleList(fuse_layer)) | |
return nn.ModuleList(fuse_layers) | |
def get_num_inchannels(self): | |
return self.num_inchannels | |
def forward(self, x): | |
if self.num_branches == 1: | |
return [self.branches[0](x[0])] | |
for i in range(self.num_branches): | |
x[i] = self.branches[i](x[i]) | |
x_fuse = [] | |
for i in range(len(self.fuse_layers)): | |
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0]) | |
for j in range(1, self.num_branches): | |
if i == j: | |
y = y + x[j] | |
else: | |
y = y + self.fuse_layers[i][j](x[j]) | |
x_fuse.append(self.relu(y)) | |
return x_fuse | |
class HighResolutionNet(nn.Module): | |
def __init__(self, num_modules, num_branches, block, | |
num_blocks, num_channels, fuse_method, **kwargs): | |
super(HighResolutionNet, self).__init__() | |
self.num_modules = num_modules | |
self.num_branches = num_branches | |
self.block = block | |
self.num_blocks = num_blocks | |
self.num_channels = num_channels | |
self.fuse_method = fuse_method | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, | |
bias=False) | |
self.bn2 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
# layer1 | |
num_channels, num_blocks = self.num_channels[0][0], self.num_blocks[0][0] | |
self.layer1 = self._make_layer(self.block[0], 64, num_channels, num_blocks) | |
stage1_out_channel = self.block[0].expansion*num_channels | |
# layer2 | |
num_channels, num_blocks = self.num_channels[1], self.num_blocks[1] | |
num_channels = [ | |
num_channels[i] * self.block[1].expansion for i in range(len(num_channels))] | |
self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels) | |
self.stage2, pre_stage_channels = self._make_stage(1, num_channels) | |
# layer3 | |
num_channels, num_blocks = self.num_channels[2], self.num_blocks[2] | |
num_channels = [ | |
num_channels[i] * self.block[2].expansion for i in range(len(num_channels))] | |
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage3, pre_stage_channels = self._make_stage(2, num_channels) | |
# layer4 | |
num_channels, num_blocks = self.num_channels[3], self.num_blocks[3] | |
num_channels = [ | |
num_channels[i] * self.block[3].expansion for i in range(len(num_channels))] | |
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels) | |
self.stage4, pre_stage_channels = self._make_stage(3, num_channels, multi_scale_output=True) | |
self._out_channels = sum(pre_stage_channels) | |
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer): | |
num_branches_cur = len(num_channels_cur_layer) | |
num_branches_pre = len(num_channels_pre_layer) | |
transition_layers = [] | |
for i in range(num_branches_cur): | |
if i < num_branches_pre: | |
if num_channels_cur_layer[i] != num_channels_pre_layer[i]: | |
transition_layers.append(nn.Sequential( | |
nn.Conv2d(num_channels_pre_layer[i], | |
num_channels_cur_layer[i], | |
3, | |
1, | |
1, | |
bias=False), | |
nn.BatchNorm2d( | |
num_channels_cur_layer[i], ), | |
nn.ReLU(inplace=True))) | |
else: | |
transition_layers.append(None) | |
else: | |
conv3x3s = [] | |
for j in range(i+1-num_branches_pre): | |
inchannels = num_channels_pre_layer[-1] | |
outchannels = num_channels_cur_layer[i] \ | |
if j == i-num_branches_pre else inchannels | |
conv3x3s.append(nn.Sequential( | |
nn.Conv2d( | |
inchannels, outchannels, 3, 2, 1, bias=False), | |
nn.BatchNorm2d(outchannels, ), | |
nn.ReLU(inplace=True))) | |
transition_layers.append(nn.Sequential(*conv3x3s)) | |
return nn.ModuleList(transition_layers) | |
def _make_layer(self, block, inplanes, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion, ), | |
) | |
layers = [] | |
layers.append(block(inplanes, planes, stride, downsample)) | |
inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(inplanes, planes)) | |
return nn.Sequential(*layers) | |
def _make_stage(self, stage_index, in_channels, | |
multi_scale_output=True): | |
num_modules = self.num_modules[stage_index] | |
num_branches = self.num_branches[stage_index] | |
num_blocks = self.num_blocks[stage_index] | |
num_channels = self.num_channels[stage_index] | |
block = self.block[stage_index] | |
fuse_method = self.fuse_method[stage_index] | |
modules = [] | |
for i in range(num_modules): | |
# multi_scale_output is only used last module | |
if not multi_scale_output and i == num_modules - 1: | |
reset_multi_scale_output = False | |
else: | |
reset_multi_scale_output = True | |
modules.append( | |
HighResolutionModule(num_branches, | |
block, | |
num_blocks, | |
in_channels, | |
num_channels, | |
fuse_method, | |
reset_multi_scale_output) | |
) | |
in_channels = modules[-1].get_num_inchannels() | |
return nn.Sequential(*modules), in_channels | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.conv2(x) | |
x = self.bn2(x) | |
x = self.relu(x) | |
x = self.layer1(x) | |
x_list = [] | |
for i in range(self.num_branches[1]): | |
if self.transition1[i] is not None: | |
x_list.append(self.transition1[i](x)) | |
else: | |
x_list.append(x) | |
y_list = self.stage2(x_list) | |
x_list = [] | |
for i in range(self.num_branches[2]): | |
if self.transition2[i] is not None: | |
x_list.append(self.transition2[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage3(x_list) | |
x_list = [] | |
for i in range(self.num_branches[3]): | |
if self.transition3[i] is not None: | |
x_list.append(self.transition3[i](y_list[-1])) | |
else: | |
x_list.append(y_list[i]) | |
y_list = self.stage4(x_list) | |
kwargs = { | |
'size': tuple(y_list[0].shape[-2:]), | |
'mode': 'bilinear', 'align_corners': False, | |
} | |
return torch.cat([F.interpolate(y,**kwargs) for y in y_list], 1) | |
def hrnet18s(pretrained=True, **kwargs): | |
model = HighResolutionNet( | |
num_modules = [1, 1, 3, 2], | |
num_branches = [1, 2, 3, 4], | |
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], | |
num_blocks = [(2,), (2,2), (2,2,2), (2,2,2,2)], | |
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], | |
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], | |
**kwargs | |
) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['hrnet_w18s']), strict=False) | |
return model | |
def hrnet18(pretrained=False, **kwargs): | |
model = HighResolutionNet( | |
num_modules = [1, 1, 4, 3], | |
num_branches = [1, 2, 3, 4], | |
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], | |
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], | |
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], | |
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], | |
**kwargs | |
) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['hrnet18']), strict=False) | |
return model | |
def hrnet32(pretrained=False, **kwargs): | |
model = HighResolutionNet( | |
num_modules = [1, 1, 4, 3], | |
num_branches = [1, 2, 3, 4], | |
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], | |
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], | |
num_channels = [(64,), (32,64), (32,64,128), (32,64,128,256)], | |
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'], | |
**kwargs | |
) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['hrnet32']), strict=False) | |
return model | |
class BinaryHeadBlock(nn.Module): | |
"""BinaryHeadBlock | |
""" | |
def __init__(self, in_channels, proj_channels, out_channels, **kwargs): | |
super(BinaryHeadBlock, self).__init__() | |
self.layers = nn.Sequential( | |
nn.Conv2d(in_channels, proj_channels, 1, bias=False), | |
nn.BatchNorm2d(proj_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(proj_channels, out_channels*2, 1, bias=False), | |
) | |
def forward(self, input): | |
N, C, H, W = input.shape | |
return self.layers(input).view(N, 2, -1, H, W) | |
def heatmap2coord(heatmap, topk=9): | |
N, C, H, W = heatmap.shape | |
score, index = heatmap.view(N,C,1,-1).topk(topk, dim=-1) | |
coord = torch.cat([index%W, index//W], dim=2) | |
return (coord*F.softmax(score, dim=-1)).sum(-1) | |
class BinaryHeatmap2Coordinate(nn.Module): | |
"""BinaryHeatmap2Coordinate | |
""" | |
def __init__(self, stride=4.0, topk=5, **kwargs): | |
super(BinaryHeatmap2Coordinate, self).__init__() | |
self.topk = topk | |
self.stride = stride | |
def forward(self, input): | |
return self.stride * heatmap2coord(input[:,1,...], self.topk) | |
def __repr__(self): | |
format_string = self.__class__.__name__ + '(' | |
format_string += 'topk={}, '.format(self.topk) | |
format_string += 'stride={}'.format(self.stride) | |
format_string += ')' | |
return format_string | |
class HeatmapHead(nn.Module): | |
"""HeatmapHead | |
""" | |
def __init__(self): | |
super(HeatmapHead, self).__init__() | |
self.decoder = BinaryHeatmap2Coordinate( | |
topk=9, | |
stride=4.0, | |
) | |
self.head = BinaryHeadBlock( | |
in_channels=270, | |
proj_channels=270, | |
out_channels=98, | |
) | |
def forward(self, input): | |
heatmap = self.head(input) | |
ldmk = self.decoder(heatmap) | |
return heatmap[:,1,...], ldmk | |
class LandmarkDetector(nn.Module): | |
def __init__(self, model_path): | |
super(LandmarkDetector, self).__init__() | |
self.backbone = HighResolutionNet( | |
num_modules = [1, 1, 4, 3], | |
num_branches = [1, 2, 3, 4], | |
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock], | |
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)], | |
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)], | |
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'] | |
) | |
self.heatmap_head = HeatmapHead() | |
self.load_state_dict(torch.load(model_path)) | |
def forward(self, img): | |
heatmap, landmark = self.heatmap_head(self.backbone(img)) | |
return heatmap, landmark |