刘虹雨
update
8ed2f16
# ------------------------------------------------------------------------------
# Reference: https://github.com/HRNet/HRNet-Image-Classification
# ------------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
__all__ = [ 'hrnet18s', 'hrnet18', 'hrnet32' ]
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes, )
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes, )
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1,
bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HighResolutionModule(nn.Module):
def __init__(self, num_branches, blocks, num_blocks, num_inchannels,
num_channels, fuse_method, multi_scale_output=True):
super(HighResolutionModule, self).__init__()
self._check_branches(
num_branches, blocks, num_blocks, num_inchannels, num_channels)
self.num_inchannels = num_inchannels
self.fuse_method = fuse_method
self.num_branches = num_branches
self.multi_scale_output = multi_scale_output
self.branches = self._make_branches(
num_branches, blocks, num_blocks, num_channels)
self.fuse_layers = self._make_fuse_layers()
self.relu = nn.ReLU(False)
def _check_branches(self, num_branches, blocks, num_blocks,
num_inchannels, num_channels):
if num_branches != len(num_blocks):
error_msg = 'NUM_BRANCHES({}) <> NUM_BLOCKS({})'.format(
num_branches, len(num_blocks))
raise ValueError(error_msg)
if num_branches != len(num_channels):
error_msg = 'NUM_BRANCHES({}) <> NUM_CHANNELS({})'.format(
num_branches, len(num_channels))
raise ValueError(error_msg)
if num_branches != len(num_inchannels):
error_msg = 'NUM_BRANCHES({}) <> NUM_INCHANNELS({})'.format(
num_branches, len(num_inchannels))
raise ValueError(error_msg)
def _make_one_branch(self, branch_index, block, num_blocks, num_channels,
stride=1):
downsample = None
if stride != 1 or \
self.num_inchannels[branch_index] != num_channels[branch_index] * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.num_inchannels[branch_index],
num_channels[branch_index] * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(num_channels[branch_index] * block.expansion),
)
layers = []
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index], stride, downsample))
self.num_inchannels[branch_index] = \
num_channels[branch_index] * block.expansion
for i in range(1, num_blocks[branch_index]):
layers.append(block(self.num_inchannels[branch_index],
num_channels[branch_index]))
return nn.Sequential(*layers)
def _make_branches(self, num_branches, block, num_blocks, num_channels):
branches = []
for i in range(num_branches):
branches.append(
self._make_one_branch(i, block, num_blocks, num_channels))
return nn.ModuleList(branches)
def _make_fuse_layers(self):
if self.num_branches == 1:
return None
num_branches = self.num_branches
num_inchannels = self.num_inchannels
fuse_layers = []
for i in range(num_branches if self.multi_scale_output else 1):
fuse_layer = []
for j in range(num_branches):
if j > i:
fuse_layer.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_inchannels[i],
1,
1,
0,
bias=False),
nn.BatchNorm2d(num_inchannels[i]),
nn.Upsample(scale_factor=2**(j-i), mode='nearest')))
elif j == i:
fuse_layer.append(None)
else:
conv3x3s = []
for k in range(i-j):
if k == i - j - 1:
num_outchannels_conv3x3 = num_inchannels[i]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
nn.BatchNorm2d(num_outchannels_conv3x3)))
else:
num_outchannels_conv3x3 = num_inchannels[j]
conv3x3s.append(nn.Sequential(
nn.Conv2d(num_inchannels[j],
num_outchannels_conv3x3,
3, 2, 1, bias=False),
nn.BatchNorm2d(num_outchannels_conv3x3),
nn.ReLU(False)))
fuse_layer.append(nn.Sequential(*conv3x3s))
fuse_layers.append(nn.ModuleList(fuse_layer))
return nn.ModuleList(fuse_layers)
def get_num_inchannels(self):
return self.num_inchannels
def forward(self, x):
if self.num_branches == 1:
return [self.branches[0](x[0])]
for i in range(self.num_branches):
x[i] = self.branches[i](x[i])
x_fuse = []
for i in range(len(self.fuse_layers)):
y = x[0] if i == 0 else self.fuse_layers[i][0](x[0])
for j in range(1, self.num_branches):
if i == j:
y = y + x[j]
else:
y = y + self.fuse_layers[i][j](x[j])
x_fuse.append(self.relu(y))
return x_fuse
class HighResolutionNet(nn.Module):
def __init__(self, num_modules, num_branches, block,
num_blocks, num_channels, fuse_method, **kwargs):
super(HighResolutionNet, self).__init__()
self.num_modules = num_modules
self.num_branches = num_branches
self.block = block
self.num_blocks = num_blocks
self.num_channels = num_channels
self.fuse_method = fuse_method
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1,
bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# layer1
num_channels, num_blocks = self.num_channels[0][0], self.num_blocks[0][0]
self.layer1 = self._make_layer(self.block[0], 64, num_channels, num_blocks)
stage1_out_channel = self.block[0].expansion*num_channels
# layer2
num_channels, num_blocks = self.num_channels[1], self.num_blocks[1]
num_channels = [
num_channels[i] * self.block[1].expansion for i in range(len(num_channels))]
self.transition1 = self._make_transition_layer([stage1_out_channel], num_channels)
self.stage2, pre_stage_channels = self._make_stage(1, num_channels)
# layer3
num_channels, num_blocks = self.num_channels[2], self.num_blocks[2]
num_channels = [
num_channels[i] * self.block[2].expansion for i in range(len(num_channels))]
self.transition2 = self._make_transition_layer(pre_stage_channels, num_channels)
self.stage3, pre_stage_channels = self._make_stage(2, num_channels)
# layer4
num_channels, num_blocks = self.num_channels[3], self.num_blocks[3]
num_channels = [
num_channels[i] * self.block[3].expansion for i in range(len(num_channels))]
self.transition3 = self._make_transition_layer(pre_stage_channels, num_channels)
self.stage4, pre_stage_channels = self._make_stage(3, num_channels, multi_scale_output=True)
self._out_channels = sum(pre_stage_channels)
def _make_transition_layer(self, num_channels_pre_layer, num_channels_cur_layer):
num_branches_cur = len(num_channels_cur_layer)
num_branches_pre = len(num_channels_pre_layer)
transition_layers = []
for i in range(num_branches_cur):
if i < num_branches_pre:
if num_channels_cur_layer[i] != num_channels_pre_layer[i]:
transition_layers.append(nn.Sequential(
nn.Conv2d(num_channels_pre_layer[i],
num_channels_cur_layer[i],
3,
1,
1,
bias=False),
nn.BatchNorm2d(
num_channels_cur_layer[i], ),
nn.ReLU(inplace=True)))
else:
transition_layers.append(None)
else:
conv3x3s = []
for j in range(i+1-num_branches_pre):
inchannels = num_channels_pre_layer[-1]
outchannels = num_channels_cur_layer[i] \
if j == i-num_branches_pre else inchannels
conv3x3s.append(nn.Sequential(
nn.Conv2d(
inchannels, outchannels, 3, 2, 1, bias=False),
nn.BatchNorm2d(outchannels, ),
nn.ReLU(inplace=True)))
transition_layers.append(nn.Sequential(*conv3x3s))
return nn.ModuleList(transition_layers)
def _make_layer(self, block, inplanes, planes, blocks, stride=1):
downsample = None
if stride != 1 or inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion, ),
)
layers = []
layers.append(block(inplanes, planes, stride, downsample))
inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(inplanes, planes))
return nn.Sequential(*layers)
def _make_stage(self, stage_index, in_channels,
multi_scale_output=True):
num_modules = self.num_modules[stage_index]
num_branches = self.num_branches[stage_index]
num_blocks = self.num_blocks[stage_index]
num_channels = self.num_channels[stage_index]
block = self.block[stage_index]
fuse_method = self.fuse_method[stage_index]
modules = []
for i in range(num_modules):
# multi_scale_output is only used last module
if not multi_scale_output and i == num_modules - 1:
reset_multi_scale_output = False
else:
reset_multi_scale_output = True
modules.append(
HighResolutionModule(num_branches,
block,
num_blocks,
in_channels,
num_channels,
fuse_method,
reset_multi_scale_output)
)
in_channels = modules[-1].get_num_inchannels()
return nn.Sequential(*modules), in_channels
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.layer1(x)
x_list = []
for i in range(self.num_branches[1]):
if self.transition1[i] is not None:
x_list.append(self.transition1[i](x))
else:
x_list.append(x)
y_list = self.stage2(x_list)
x_list = []
for i in range(self.num_branches[2]):
if self.transition2[i] is not None:
x_list.append(self.transition2[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage3(x_list)
x_list = []
for i in range(self.num_branches[3]):
if self.transition3[i] is not None:
x_list.append(self.transition3[i](y_list[-1]))
else:
x_list.append(y_list[i])
y_list = self.stage4(x_list)
kwargs = {
'size': tuple(y_list[0].shape[-2:]),
'mode': 'bilinear', 'align_corners': False,
}
return torch.cat([F.interpolate(y,**kwargs) for y in y_list], 1)
def hrnet18s(pretrained=True, **kwargs):
model = HighResolutionNet(
num_modules = [1, 1, 3, 2],
num_branches = [1, 2, 3, 4],
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock],
num_blocks = [(2,), (2,2), (2,2,2), (2,2,2,2)],
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)],
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'],
**kwargs
)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['hrnet_w18s']), strict=False)
return model
def hrnet18(pretrained=False, **kwargs):
model = HighResolutionNet(
num_modules = [1, 1, 4, 3],
num_branches = [1, 2, 3, 4],
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock],
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)],
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)],
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'],
**kwargs
)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['hrnet18']), strict=False)
return model
def hrnet32(pretrained=False, **kwargs):
model = HighResolutionNet(
num_modules = [1, 1, 4, 3],
num_branches = [1, 2, 3, 4],
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock],
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)],
num_channels = [(64,), (32,64), (32,64,128), (32,64,128,256)],
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM'],
**kwargs
)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['hrnet32']), strict=False)
return model
class BinaryHeadBlock(nn.Module):
"""BinaryHeadBlock
"""
def __init__(self, in_channels, proj_channels, out_channels, **kwargs):
super(BinaryHeadBlock, self).__init__()
self.layers = nn.Sequential(
nn.Conv2d(in_channels, proj_channels, 1, bias=False),
nn.BatchNorm2d(proj_channels),
nn.ReLU(inplace=True),
nn.Conv2d(proj_channels, out_channels*2, 1, bias=False),
)
def forward(self, input):
N, C, H, W = input.shape
return self.layers(input).view(N, 2, -1, H, W)
def heatmap2coord(heatmap, topk=9):
N, C, H, W = heatmap.shape
score, index = heatmap.view(N,C,1,-1).topk(topk, dim=-1)
coord = torch.cat([index%W, index//W], dim=2)
return (coord*F.softmax(score, dim=-1)).sum(-1)
class BinaryHeatmap2Coordinate(nn.Module):
"""BinaryHeatmap2Coordinate
"""
def __init__(self, stride=4.0, topk=5, **kwargs):
super(BinaryHeatmap2Coordinate, self).__init__()
self.topk = topk
self.stride = stride
def forward(self, input):
return self.stride * heatmap2coord(input[:,1,...], self.topk)
def __repr__(self):
format_string = self.__class__.__name__ + '('
format_string += 'topk={}, '.format(self.topk)
format_string += 'stride={}'.format(self.stride)
format_string += ')'
return format_string
class HeatmapHead(nn.Module):
"""HeatmapHead
"""
def __init__(self):
super(HeatmapHead, self).__init__()
self.decoder = BinaryHeatmap2Coordinate(
topk=9,
stride=4.0,
)
self.head = BinaryHeadBlock(
in_channels=270,
proj_channels=270,
out_channels=98,
)
def forward(self, input):
heatmap = self.head(input)
ldmk = self.decoder(heatmap)
return heatmap[:,1,...], ldmk
class LandmarkDetector(nn.Module):
def __init__(self, model_path):
super(LandmarkDetector, self).__init__()
self.backbone = HighResolutionNet(
num_modules = [1, 1, 4, 3],
num_branches = [1, 2, 3, 4],
block = [Bottleneck, BasicBlock, BasicBlock, BasicBlock],
num_blocks = [(4,), (4,4), (4,4,4), (4,4,4,4)],
num_channels = [(64,), (18,36), (18,36,72), (18,36,72,144)],
fuse_method = ['SUM', 'SUM', 'SUM', 'SUM']
)
self.heatmap_head = HeatmapHead()
self.load_state_dict(torch.load(model_path))
def forward(self, img):
heatmap, landmark = self.heatmap_head(self.backbone(img))
return heatmap, landmark