Spaces:
Running
on
Zero
Running
on
Zero
| """This module contains simple helper functions """ | |
| from __future__ import print_function | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import os | |
| from math import * | |
| def P2sRt(P): | |
| ''' decompositing camera matrix P. | |
| Args: | |
| P: (3, 4). Affine Camera Matrix. | |
| Returns: | |
| s: scale factor. | |
| R: (3, 3). rotation matrix. | |
| t2d: (2,). 2d translation. | |
| ''' | |
| t3d = P[:, 3] | |
| R1 = P[0:1, :3] | |
| R2 = P[1:2, :3] | |
| s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2.0 | |
| r1 = R1 / np.linalg.norm(R1) | |
| r2 = R2 / np.linalg.norm(R2) | |
| r3 = np.cross(r1, r2) | |
| R = np.concatenate((r1, r2, r3), 0) | |
| return s, R, t3d | |
| def matrix2angle(R): | |
| ''' compute three Euler angles from a Rotation Matrix. Ref: http://www.gregslabaugh.net/publications/euler.pdf | |
| Args: | |
| R: (3,3). rotation matrix | |
| Returns: | |
| x: yaw | |
| y: pitch | |
| z: roll | |
| ''' | |
| # assert(isRotationMatrix(R)) | |
| if R[2, 0] != 1 and R[2, 0] != -1: | |
| x = -asin(max(-1, min(R[2, 0], 1))) | |
| y = atan2(R[2, 1] / cos(x), R[2, 2] / cos(x)) | |
| z = atan2(R[1, 0] / cos(x), R[0, 0] / cos(x)) | |
| else: # Gimbal lock | |
| z = 0 # can be anything | |
| if R[2, 0] == -1: | |
| x = np.pi / 2 | |
| y = z + atan2(R[0, 1], R[0, 2]) | |
| else: | |
| x = -np.pi / 2 | |
| y = -z + atan2(-R[0, 1], -R[0, 2]) | |
| return [x, y, z] | |
| def angle2matrix(angles): | |
| ''' get rotation matrix from three rotation angles(radian). The same as in 3DDFA. | |
| Args: | |
| angles: [3,]. x, y, z angles | |
| x: yaw. | |
| y: pitch. | |
| z: roll. | |
| Returns: | |
| R: 3x3. rotation matrix. | |
| ''' | |
| # x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2]) | |
| # x, y, z = angles[0], angles[1], angles[2] | |
| y, x, z = angles[0], angles[1], angles[2] | |
| # x | |
| Rx=np.array([[1, 0, 0], | |
| [0, cos(x), -sin(x)], | |
| [0, sin(x), cos(x)]]) | |
| # y | |
| Ry=np.array([[ cos(y), 0, sin(y)], | |
| [ 0, 1, 0], | |
| [-sin(y), 0, cos(y)]]) | |
| # z | |
| Rz=np.array([[cos(z), -sin(z), 0], | |
| [sin(z), cos(z), 0], | |
| [ 0, 0, 1]]) | |
| R = Rz.dot(Ry).dot(Rx) | |
| return R.astype(np.float32) | |
| def tensor2im(input_image, imtype=np.uint8): | |
| """"Converts a Tensor array into a numpy image array. | |
| Parameters: | |
| input_image (tensor) -- the input image tensor array | |
| imtype (type) -- the desired type of the converted numpy array | |
| """ | |
| if not isinstance(input_image, np.ndarray): | |
| if isinstance(input_image, torch.Tensor): # get the data from a variable | |
| image_tensor = input_image.data | |
| else: | |
| return input_image | |
| image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
| if image_numpy.shape[0] == 1: # grayscale to RGB | |
| image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
| image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
| else: # if it is a numpy array, do nothing | |
| image_numpy = input_image | |
| return image_numpy.astype(imtype) | |
| def diagnose_network(net, name='network'): | |
| """Calculate and print the mean of average absolute(gradients) | |
| Parameters: | |
| net (torch network) -- Torch network | |
| name (str) -- the name of the network | |
| """ | |
| mean = 0.0 | |
| count = 0 | |
| for param in net.parameters(): | |
| if param.grad is not None: | |
| mean += torch.mean(torch.abs(param.grad.data)) | |
| count += 1 | |
| if count > 0: | |
| mean = mean / count | |
| print(name) | |
| print(mean) | |
| def save_image(image_numpy, image_path): | |
| """Save a numpy image to the disk | |
| Parameters: | |
| image_numpy (numpy array) -- input numpy array | |
| image_path (str) -- the path of the image | |
| """ | |
| image_pil = Image.fromarray(image_numpy) | |
| image_pil.save(image_path) | |
| def print_numpy(x, val=True, shp=False): | |
| """Print the mean, min, max, median, std, and size of a numpy array | |
| Parameters: | |
| val (bool) -- if print the values of the numpy array | |
| shp (bool) -- if print the shape of the numpy array | |
| """ | |
| x = x.astype(np.float64) | |
| if shp: | |
| print('shape,', x.shape) | |
| if val: | |
| x = x.flatten() | |
| print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
| np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
| def mkdirs(paths): | |
| """create empty directories if they don't exist | |
| Parameters: | |
| paths (str list) -- a list of directory paths | |
| """ | |
| if isinstance(paths, list) and not isinstance(paths, str): | |
| for path in paths: | |
| mkdir(path) | |
| else: | |
| mkdir(paths) | |
| def mkdir(path): | |
| """create a single empty directory if it didn't exist | |
| Parameters: | |
| path (str) -- a single directory path | |
| """ | |
| if not os.path.exists(path): | |
| os.makedirs(path) | |