Spaces:
Running
on
Zero
Running
on
Zero
"""This module contains simple helper functions """ | |
from __future__ import print_function | |
import torch | |
import numpy as np | |
from PIL import Image | |
import os | |
from math import * | |
def P2sRt(P): | |
''' decompositing camera matrix P. | |
Args: | |
P: (3, 4). Affine Camera Matrix. | |
Returns: | |
s: scale factor. | |
R: (3, 3). rotation matrix. | |
t2d: (2,). 2d translation. | |
''' | |
t3d = P[:, 3] | |
R1 = P[0:1, :3] | |
R2 = P[1:2, :3] | |
s = (np.linalg.norm(R1) + np.linalg.norm(R2)) / 2.0 | |
r1 = R1 / np.linalg.norm(R1) | |
r2 = R2 / np.linalg.norm(R2) | |
r3 = np.cross(r1, r2) | |
R = np.concatenate((r1, r2, r3), 0) | |
return s, R, t3d | |
def matrix2angle(R): | |
''' compute three Euler angles from a Rotation Matrix. Ref: http://www.gregslabaugh.net/publications/euler.pdf | |
Args: | |
R: (3,3). rotation matrix | |
Returns: | |
x: yaw | |
y: pitch | |
z: roll | |
''' | |
# assert(isRotationMatrix(R)) | |
if R[2, 0] != 1 and R[2, 0] != -1: | |
x = -asin(max(-1, min(R[2, 0], 1))) | |
y = atan2(R[2, 1] / cos(x), R[2, 2] / cos(x)) | |
z = atan2(R[1, 0] / cos(x), R[0, 0] / cos(x)) | |
else: # Gimbal lock | |
z = 0 # can be anything | |
if R[2, 0] == -1: | |
x = np.pi / 2 | |
y = z + atan2(R[0, 1], R[0, 2]) | |
else: | |
x = -np.pi / 2 | |
y = -z + atan2(-R[0, 1], -R[0, 2]) | |
return [x, y, z] | |
def angle2matrix(angles): | |
''' get rotation matrix from three rotation angles(radian). The same as in 3DDFA. | |
Args: | |
angles: [3,]. x, y, z angles | |
x: yaw. | |
y: pitch. | |
z: roll. | |
Returns: | |
R: 3x3. rotation matrix. | |
''' | |
# x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2]) | |
# x, y, z = angles[0], angles[1], angles[2] | |
y, x, z = angles[0], angles[1], angles[2] | |
# x | |
Rx=np.array([[1, 0, 0], | |
[0, cos(x), -sin(x)], | |
[0, sin(x), cos(x)]]) | |
# y | |
Ry=np.array([[ cos(y), 0, sin(y)], | |
[ 0, 1, 0], | |
[-sin(y), 0, cos(y)]]) | |
# z | |
Rz=np.array([[cos(z), -sin(z), 0], | |
[sin(z), cos(z), 0], | |
[ 0, 0, 1]]) | |
R = Rz.dot(Ry).dot(Rx) | |
return R.astype(np.float32) | |
def tensor2im(input_image, imtype=np.uint8): | |
""""Converts a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def diagnose_network(net, name='network'): | |
"""Calculate and print the mean of average absolute(gradients) | |
Parameters: | |
net (torch network) -- Torch network | |
name (str) -- the name of the network | |
""" | |
mean = 0.0 | |
count = 0 | |
for param in net.parameters(): | |
if param.grad is not None: | |
mean += torch.mean(torch.abs(param.grad.data)) | |
count += 1 | |
if count > 0: | |
mean = mean / count | |
print(name) | |
print(mean) | |
def save_image(image_numpy, image_path): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
image_pil.save(image_path) | |
def print_numpy(x, val=True, shp=False): | |
"""Print the mean, min, max, median, std, and size of a numpy array | |
Parameters: | |
val (bool) -- if print the values of the numpy array | |
shp (bool) -- if print the shape of the numpy array | |
""" | |
x = x.astype(np.float64) | |
if shp: | |
print('shape,', x.shape) | |
if val: | |
x = x.flatten() | |
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
def mkdirs(paths): | |
"""create empty directories if they don't exist | |
Parameters: | |
paths (str list) -- a list of directory paths | |
""" | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
"""create a single empty directory if it didn't exist | |
Parameters: | |
path (str) -- a single directory path | |
""" | |
if not os.path.exists(path): | |
os.makedirs(path) | |