AvatarArtist / data_process /input_img_align_extract_ldm.py
刘虹雨
update
8ed2f16
raw
history blame
29.4 kB
import os
import sys
import json
import time
import glob
import logging
import argparse
from datetime import datetime
import cv2
import torch
import numpy as np
from tqdm import tqdm
from scipy.ndimage import gaussian_filter1d
from PIL import Image
from natsort import ns, natsorted
from lib.config.config import cfg
from lib.faceverse_process.fit_faceverse import fit_faceverse
from lib.face_detect_ldmk_pipeline import FaceLdmkDetector
from lib.model_builder import make_model
from lib.align_in_the_wild import recreate_aligned_images, recreate_aligned_videos_multiprocessing
from lib.preprocess_faceverse import make_cam_dataset_FFHQ, render_orth_mp
from lib.pdfgc.encoder import FanEncoder
from lib.pdfgc.utils import get_motion_feature
logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s")
def is_image_file(filename):
"""
Check if a file has a common image format extension.
Args:
filename (str): The name or path of the file.
Returns:
bool: True if the file has an image extension (.jpg, .png, etc.), otherwise False.
"""
image_extensions = {".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"}
return os.path.splitext(filename)[1].lower() in image_extensions
def get_images_in_folder(folder_path):
"""
Check if a given folder contains images and return a list of image file names.
Args:
folder_path (str): The path of the folder to check.
Returns:
list: A list of image file names if found, otherwise an empty list.
"""
if not os.path.isdir(folder_path): # Check if the path is a directory
return []
image_files = [file for file in os.listdir(folder_path) if
os.path.isfile(os.path.join(folder_path, file)) and is_image_file(file)]
return image_files # Return a list of image names
def is_video_file(file_path):
video_extensions = {".mp4", ".avi", ".mov", ".mkv", ".flv", ".wmv" }
ext = os.path.splitext(file_path)[1].lower()
return ext in video_extensions
def extract_imgs(input_path, save_dir, skip=1, center_crop=False, res=512, is_video=False, is_img=True):
os.makedirs(save_dir, exist_ok=True)
if is_video and is_video_file(input_path):
videoCapture = cv2.VideoCapture(input_path)
size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
if center_crop:
length = min(size) // 2
top, bottom, left, right = max(0, size[1] // 2 - length), min(size[1], size[1] // 2 + length), max(0, size[
0] // 2 - length), min(size[0], size[0] // 2 + length)
else:
length = max(size) // 2
top, bottom, left, right = max(0, length - size[1] // 2), max(0, length - size[1] // 2), max(0,
length - size[
0] // 2), max(
0, length - size[0] // 2)
count = -1
while True:
flag, frame = videoCapture.read()
count += 1
if not flag:
break
if skip > 1 and not (count % skip == 0):
continue
if center_crop:
crop_frame = frame[top: bottom, left: right]
else:
crop_frame = cv2.copyMakeBorder(frame, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
if not res == crop_frame.shape[0]:
crop_frame = cv2.resize(crop_frame, dsize=(res, res), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(save_dir, str(count) + '.png'), crop_frame)
videoCapture.release()
logging.info(f"Video frames saved in {save_dir}")
elif is_img:
all_imgs = get_images_in_folder(input_path)
if len(all_imgs) == 0:
raise ValueError("The input file has no images")
else:
count = -1
for image_name in all_imgs:
count += 1
img = cv2.imread(os.path.join(input_path, image_name))
size = (img.shape[1], img.shape[0])
if center_crop:
length = min(size) // 2
top, bottom, left, right = max(0, size[1] // 2 - length), min(size[1], size[1] // 2 + length), max(
0, size[0] // 2 - length), min(size[0], size[0] // 2 + length)
else:
length = max(size) // 2
top, bottom, left, right = max(0, length - size[1] // 2), max(0, length - size[1] // 2), max(0,
length -
size[
0] // 2), max(
0, length - size[0] // 2)
if center_crop:
crop_frame = img[top: bottom, left: right]
else:
crop_frame = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=0)
if not res == crop_frame.shape[0]:
crop_frame = cv2.resize(crop_frame, dsize=(res, res), interpolation=cv2.INTER_LINEAR)
cv2.imwrite(os.path.join(save_dir, image_name.split('.')[0].replace(" ", "_") + '.png'), crop_frame)
logging.info(f"Images saved in {save_dir}")
else:
raise ValueError("The input file is not a video")
def get_valid_input_idx(input_path, save_dir, is_video, is_img, skip=1):
"""
Extracts images from the input file, organizes them, and creates a JSON file listing valid images.
Args:
input_path (str): Path to the input file (e.g., a video or archive).
save_dir (str): Directory to save extracted images.
skip (int, optional): Step size for selecting images (default: 1).
Returns:
str: Path to the generated JSON file containing valid image names.
"""
# Extract images to a subdirectory named after the input file
raw_imgs_save_dir = os.path.join(save_dir, os.path.splitext(os.path.basename(input_path))[0])
extract_imgs(input_path, raw_imgs_save_dir, is_video=is_video, is_img=is_img)
# Define JSON save path
valid_imgs_json_save_path = os.path.join(save_dir, 'valid_imgs.json')
valid_videos, count, img_nums = [], 0, [0]
# Process subdirectories in `save_dir`
for video_imgs_name in tqdm(os.listdir(save_dir)):
print(video_imgs_name)
video_imgs_dir = os.path.join(save_dir, video_imgs_name)
if not os.path.isdir(video_imgs_dir):
continue
# Collect and sort image files
img_names = natsorted([x for x in os.listdir(video_imgs_dir) if x.endswith((".jpg", ".png", ".webp"))], alg=ns.PATH)
# Store selected images with skip interval
valid_videos.append([video_imgs_name, img_names[::skip]])
count += len(valid_videos[-1][1])
img_nums.append(count)
# Save results to JSON
with open(valid_imgs_json_save_path, 'w') as f:
json.dump(valid_videos, f, indent=4)
return valid_imgs_json_save_path # Return JSON file path
def make_coeff_dataset_FFHQ(tracking_dir, save_dir, smooth=False, is_img=False):
"""
Processes and organizes FaceVerse coefficients into a structured dataset.
Parameters:
tracking_dir (str): Source directory containing tracked coefficient sequences
save_dir (str): Target directory to save processed coefficients
smooth (bool): Apply temporal smoothing to coefficients when True
"""
# Iterate through each sequence directory
for prefix in tqdm(os.listdir(tracking_dir)):
seq_path = os.path.join(tracking_dir, prefix)
# Skip non-directory entries
if not os.path.isdir(seq_path):
continue
# Collect valid frame directories containing 'finish' flag file
frame_dirs = [
name for name in os.listdir(seq_path)
if os.path.exists(os.path.join(seq_path, name, 'finish'))
]
# Sort frames numerically (requires directory names to be integer strings)
if not is_img:
frame_dirs.sort(key=lambda x: int(x))
try:
# Load all coefficient sequences for this sequence
coeff_seq = np.stack([
np.load(os.path.join(seq_path, fname, 'coeffs.npy'))
for fname in frame_dirs
], axis=0) # Shape: [num_frames, num_coeffs]
# Apply temporal smoothing if enabled
if smooth:
# Gaussian filter with σ=0.5 across time dimension
coeff_seq = gaussian_filter1d(coeff_seq, sigma=0.5, axis=0)
# Create output directory structure
output_seq_dir = os.path.join(save_dir, prefix)
os.makedirs(output_seq_dir, exist_ok=True)
# Save processed coefficients per frame
for idx, fname in enumerate(frame_dirs):
output_path = os.path.join(output_seq_dir, fname + '.npy')
np.save(output_path, coeff_seq[idx])
except Exception as e:
# Note: Consider adding error logging in production code
# print(f"Skipping sequence {prefix} due to error: {str(e)}")
continue
class Process(object):
def __init__(self, cfg):
self.cfg = cfg
self.net_fd, self.net_ldmk, self.net_ldmk_3d = make_model(self.cfg)
self.net_fd.cuda()
self.net_ldmk.cuda()
self.net_ldmk_3d.cuda()
pd_fgc = FanEncoder()
weight_dict = torch.load(cfg.pdfgc_path)
pd_fgc.load_state_dict(weight_dict, strict=False)
pd_fgc = pd_fgc.eval().cuda()
self.pd_fgc = pd_fgc
### set eval and freeze models
self.net_fd.eval()
self.net_ldmk.eval()
self.net_ldmk_3d.eval()
self.stand_index = np.array([96, 97, 54, 76, 82])
self.fd_ldmk_detector = FaceLdmkDetector(self.net_fd, self.net_ldmk, self.net_ldmk_3d)
def get_faceverse_labels_FFHQ(self, tracking_dir, root_dir, fv2fl_T_path='lib/FaceVerse/v3/fv2fl_30.npy',
focal=4.2647, need_render=False,
save_uv=True, save_mesh=False, save_name=None, render_normal_uv=False,
num_thread=1, use_smooth=False, test_data=False, skip=False, is_img=False):
"""
Processes FaceVerse tracking data to generate dataset labels for FFHQ-style datasets.
Parameters:
tracking_dir (str): Path to directory containing FaceVerse tracking data
root_dir (str): Root directory for dataset outputs
fv2fl_T_path (str): Path to FaceVerse-to-FLAME transformation matrix
focal (float): Camera focal length
need_render (bool): Whether to render visualizations
save_uv (bool): Save UV texture maps if True
save_mesh (bool): Save 3D meshes if True
save_name (str): Custom name for output directory
render_normal_uv (bool): Render normal maps in UV space if True
num_thread (int): Number of parallel processing threads
use_smooth (bool): Apply temporal smoothing to coefficients if True
test_data (bool): Process as test data with different output structure if True
skip (bool): Skip existing files if True
"""
# Setup base directories
save_dir = os.path.join(root_dir, 'dataset')
os.makedirs(save_dir, exist_ok=True)
# Load FaceVerse to FLAME transformation matrix
fv2fl_T = np.load(fv2fl_T_path).astype(np.float32)
# Coordinate transformation parameters
orth_scale = 5.00 # Orthographic projection scaling factor
orth_shift = np.array([0, 0.005, 0.], dtype=np.float32) # Coordinate shift
box_warp = 2.0 # Normalization scaling factor
# Path configurations
face_model_dir = 'lib/FaceVerse/v3' # Pre-trained FaceVerse model
save_render_dir = os.path.join(save_dir, 'orthRender256x256_face_eye' if save_name is None else save_name)
save_mesh_dir = os.path.join(save_dir, 'FVmeshes512x512') if save_mesh else None
save_uv_dir = os.path.join(save_dir, 'uvRender256x256') if save_uv else None
# Render orthographic projections and process geometry
render_orth_mp(
tracking_dir,
save_render_dir,
face_model_dir,
fv2fl_T,
{'scale': orth_scale, 'shift': orth_shift},
focal,
render_vis=need_render,
save_mesh_dir=save_mesh_dir,
save_uv_dir=save_uv_dir,
render_normal_uv=render_normal_uv,
skip=skip,
num_thread=num_thread,
crop_param=[128, 114, 256, 256], # Crop parameters: x_offset, y_offset, width, height
save_coeff=True
)
# Compute normalization transformation matrix
normalizeFL_T = np.eye(4, dtype=np.float32)
scale_T = (orth_scale / box_warp) * np.eye(3, dtype=np.float32) # Scaling component
shift_T = scale_T.dot(orth_shift.reshape(3, 1)) # Translation component
normalizeFL_T[:3, :3], normalizeFL_T[:3, 3:] = scale_T, shift_T
# Update FaceVerse to FLAME transformation with normalization
fv2fl_T = np.dot(normalizeFL_T, fv2fl_T)
# Generate camera parameters dataset
cam_params, cond_cam_params, fv_exp_eye_params = make_cam_dataset_FFHQ(
tracking_dir, fv2fl_T, focal, test_data=test_data
)
# Handle different output structures for test vs training data
if test_data:
# Save per-sequence camera parameters
for prefix in cam_params.keys():
save_json_name = f'dataset_{prefix}_realcam.json'
output_path = os.path.join(save_dir, 'images512x512', save_json_name)
with open(output_path, "w") as f:
json.dump({"labels": cam_params[prefix]}, f, indent=4)
else:
# Save unified camera parameters with optional temporal smoothing
save_json_name = 'dataset_realcam.json'
if use_smooth:
smoothed_params = []
# Process each subdirectory sequence
for sub_name in os.listdir(os.path.join(save_dir, 'images512x512')):
sub_path = os.path.join(save_dir, 'images512x512', sub_name)
if not os.path.isdir(sub_path):
continue
# Extract and sort sequence frames
sub_json = [case for case in cam_params if case[0].split('/')[0] == sub_name]
sub_json.sort(key=lambda x: int(x[0].split('/')[1].split('.')[0]))
# Apply Gaussian smoothing to coefficients
coeff_seq = np.array([x[1] for x in sub_json], dtype=np.float32)
coeff_seq = gaussian_filter1d(coeff_seq, sigma=1.5, axis=0)
# Rebuild parameter list with smoothed coefficients
smoothed_params.extend([
[x[0], coeff_seq[idx].tolist()]
for idx, x in enumerate(sub_json)
])
cam_params = smoothed_params
# Save final parameters
output_path = os.path.join(save_dir, 'images512x512', save_json_name)
with open(output_path, "w") as f:
json.dump({"labels": cam_params}, f, indent=4)
# Generate final coefficient dataset
make_coeff_dataset_FFHQ(tracking_dir, os.path.join(save_dir, 'coeffs'), smooth=use_smooth, is_img=is_img)
def get_landmarks(self, imgs_root, save_dir, valid_imgs_json, skip=False, is_img=False):
self.fd_ldmk_detector.reset()
out_detection = save_dir
os.makedirs(out_detection, exist_ok=True)
valid_idx = json.loads(open(valid_imgs_json).read())
no_face_log = []
for vidx, (video_name, imgs) in enumerate(valid_idx):
if skip and os.path.exists(os.path.join(out_detection, video_name + '.json')):
continue
bar = tqdm(imgs)
save_kps = dict()
save_kps_3d = dict()
for img_name in bar:
bar.set_description('%d/%d: %s' % (vidx, len(valid_idx), video_name))
img_path = os.path.join(imgs_root, video_name, img_name)
img = cv2.imread(img_path)
with torch.no_grad():
try:
ldmks, ldmks_3d, boxes = self.fd_ldmk_detector.inference(img)
except Exception as e:
self.fd_ldmk_detector.reset()
logging.error(f"Error during inference: {e}") # Error log
no_face_log.append([video_name, img_name])
continue
if is_img:
self.fd_ldmk_detector.reset()
# default the first one face
keypoints = ldmks[0, self.stand_index]
ldmks_3d = ldmks_3d[0]
kps = [[float(int(keypoints[0][0])), float(int(keypoints[0][1]))],
[float(int(keypoints[1][0])), float(int(keypoints[1][1]))],
[float(int(keypoints[2][0])), float(int(keypoints[2][1]))],
[float(int(keypoints[3][0])), float(int(keypoints[3][1]))],
[float(int(keypoints[4][0])), float(int(keypoints[4][1]))]
]
save_kps[img_name] = kps
save_kps_3d[img_name] = ldmks_3d.tolist()
logging.info(f"landmarks: {os.path.join(out_detection, video_name + '.json')}")
with open(os.path.join(out_detection, video_name + '.json'), 'w') as f:
f.write(json.dumps(save_kps, indent=4))
with open(os.path.join(out_detection, video_name + '3d.json'), 'w') as f:
f.write(json.dumps(save_kps_3d, indent=4))
if len(no_face_log) > 0:
jstr = json.dumps(no_face_log, indent=4)
with open(os.path.join(out_detection, str(datetime.now()) + '_total_no_face_log.json'), 'w') as f:
f.write(jstr)
self.fd_ldmk_detector.reset()
def get_pdfgc(self, input_imgs_dir, input_ldm3d_dir, motion_save_base_dir):
all_items = os.listdir(input_ldm3d_dir)
folders = [item for item in all_items if os.path.isdir(os.path.join(input_ldm3d_dir, item))]
with torch.no_grad():
for file_name in folders:
motion_save_dir = os.path.join(motion_save_base_dir, file_name)
os.makedirs(motion_save_dir, exist_ok=True)
img_list = sorted(
[f for f in os.listdir(os.path.join(input_imgs_dir, file_name))
if os.path.splitext(f)[-1].lower() in {'.jpg', '.jpeg', '.png', '.bmp', '.gif'}]
)
for img_name in img_list:
img_dir = os.path.join(input_imgs_dir, file_name, img_name)
lmks_dir = os.path.join(input_ldm3d_dir, file_name,
img_name.replace('.png', '.npy').replace('.jpg', '.npy').replace('.jpeg',
'.npy'))
img = np.array(Image.open(img_dir))
img = torch.from_numpy((img.astype(np.float32) / 127.5 - 1)).cuda()
img = img.permute([2, 0, 1]).unsqueeze(0)
lmks = torch.from_numpy(np.load(lmks_dir)).cuda().unsqueeze(0)
motion = get_motion_feature(self.pd_fgc, img, lmks).squeeze(0).cpu().numpy()
np.save(os.path.join(motion_save_dir, img_name.replace('.png', '.npy').replace('.jpg', '.npy')),
motion)
def get_faceverse(self, save_dir, save_tracking_dir, is_img):
fit_faceverse(save_dir, save_tracking_dir, is_img=is_img)
def clean_labels(self, tracking_dir, labels_path, final_label_path):
"""
Filter out labels containing frames with no detected faces
Args:
tracking_dir: Path to directory containing no-face detection logs
labels_path: Path to original labels JSON file
final_path: Output path for cleaned labels JSON
"""
# Initialize collection of frames with no faces
no_face_entries = []
# Load all no-face detection logs
for log_file in os.listdir(tracking_dir):
if not log_file.endswith("_total_no_face_log.json"):
continue
with open(os.path.join(tracking_dir, log_file)) as f:
no_face_entries.extend(json.load(f))
# Load original labels and extract filenames
with open(labels_path) as f:
original_labels = json.load(f)['labels']
label_filenames = [label[0] for label in original_labels]
# Identify frames to exclude
excluded_frames = set()
for entry in no_face_entries:
# Extract video and frame names from log entry path
path_parts = entry[1].split('/')
video_name = path_parts[-2]
frame_name = path_parts[-1]
composite_key = f"{video_name}/{frame_name}"
logging.debug(f"Processing no-face entry: {composite_key}")
if composite_key in label_filenames:
excluded_frames.add(frame_name)
logging.info(f"Identified {len(excluded_frames)} frames to exclude")
# Filter out excluded frames from labels
cleaned_labels = []
for label in tqdm(original_labels, desc="Filtering labels"):
# Label format: "video_name/frame_name"
frame_id = label[0].split('/')[1]
if frame_id not in excluded_frames:
cleaned_labels.append(label)
# Save cleaned labels
logging.info(f"Original labels: {len(original_labels)}, Cleaned labels: {len(cleaned_labels)}")
with open(final_label_path, 'w') as f:
json.dump({'labels': cleaned_labels}, f, indent=4)
def inference(self, input_dir, save_dir, is_video=True, is_img=False, smooth_cropping_mode=3.0,
no_extract_frames=False, no_extract_landmarks=False, no_align=False,
no_fitting_faceverse=False, no_render_faceverse=False, already_align=False, no_pdfgc_motion=False):
"""
End-to-end processing pipeline for facial analysis and reconstruction.
Parameters:
input_dir (str): Source directory containing input videos/images
save_dir (str): Root directory for all processed outputs
is_video (bool): True when processing video files
is_img (bool): True when processing image sequences
smooth_cropping_mode (float): Smoothing strength for video frame alignment
no_extract_frames (bool): Extract frames from video if True
no_extract_landmarks (bool): Detect facial landmarks if True
no_align (bool): Align and crop face regions if True
no_fitting_faceverse (bool): Fit FaceVerse model if True
no_render_faceverse (bool): Render FaceVerse outputs if True
"""
# Initialize directory paths
motions_save_dir = os.path.join(save_dir, 'dataset', "motions")
data_save_dir = os.path.join(save_dir, 'dataset', "images512x512") # Final processed images
raw_detection_dir = os.path.join(save_dir, "raw_detections") # Landmark detection results
save_tracking_dir = os.path.join(save_dir, 'crop_fv_tracking') # FaceVerse tracking data
indir = os.path.join(save_dir, 'raw_frames') # Raw extracted frames
aligned3d_save_dir = os.path.join(save_dir, 'align_3d_landmark')
# --- Frame Extraction Stage ---
if not no_extract_frames:
logging.info("Extracting frames from input source")
valid_imgs_json = get_valid_input_idx(
input_dir,
indir,
is_video=is_video,
is_img=is_img,
skip=1 # Frame sampling interval
)
logging.info(f"Frame extraction complete. Results in {indir}")
else:
valid_imgs_json = os.path.join(indir, 'valid_imgs.json')
logging.info(f"Using pre-extracted frames from {indir}")
# --- Landmark Detection Stage ---
if not no_extract_landmarks:
logging.info("Performing facial landmark detection")
self.get_landmarks(indir, raw_detection_dir, valid_imgs_json, is_img=is_img)
logging.info(f"Landmark detection complete. Results in {raw_detection_dir}")
else:
logging.info(f"Using pre-computed landmarks from {raw_detection_dir}")
# --- Face Alignment Stage ---
if not no_align:
logging.info("Aligning and cropping face regions")
if is_video:
# Video processing with temporal smoothing
recreate_aligned_videos_multiprocessing(
indir,
raw_detection_dir,
data_save_dir,
valid_imgs_json,
apply_GF=smooth_cropping_mode # Gaussian filtering strength
)
elif is_img:
# Image sequence processing
recreate_aligned_images(
indir,
raw_detection_dir,
data_save_dir,
already_align=already_align,
valid_imgs_json=valid_imgs_json
)
else:
raise ValueError("Invalid input type - must be video or image sequence")
logging.info(f"Alignment complete. Results in {data_save_dir}")
else:
logging.info(f"Using pre-aligned images from {data_save_dir}")
if not no_pdfgc_motion:
logging.info("Getting the pdfgc motions")
self.get_pdfgc(data_save_dir, aligned3d_save_dir, motions_save_dir)
logging.info(f"Alignment complete. Results in {motions_save_dir}")
else:
logging.info(f"Using pre-aligned images from {motions_save_dir}")
# --- FaceVerse Model Fitting Stage ---
if not no_fitting_faceverse:
logging.info("Fitting FaceVerse 3D face model")
self.get_faceverse(
data_save_dir,
save_tracking_dir,
is_img # Different processing for images vs video
)
logging.info(f"FaceVerse fitting complete. Results in {save_tracking_dir}")
else:
logging.info(f"Using pre-computed FaceVerse fits from {save_tracking_dir}")
# --- Rendering and Final Output Stage ---
if not no_render_faceverse:
logging.info("Generating FaceVerse renders and camera parameters")
self.get_faceverse_labels_FFHQ(
save_tracking_dir,
save_dir,
is_img=is_img
)
logging.info("Rendering and label generation complete")
else:
logging.info("Skipping final rendering stage")
if is_video:
logging.info("Clean labels")
self.clean_labels(save_tracking_dir, os.path.join(data_save_dir, 'dataset_realcam.json'),
os.path.join(data_save_dir, 'dataset_realcam_clean.json'))
def main():
os.makedirs(cfg.save_dir, exist_ok=True)
process = Process(cfg)
process.inference(cfg.input_dir, cfg.save_dir, is_video=cfg.is_video, is_img=cfg.is_img,
no_extract_frames=cfg.no_extract_frames, no_extract_landmarks=cfg.no_extract_landmarks,
no_align=cfg.no_align,
no_fitting_faceverse=cfg.no_fitting_faceverse, no_render_faceverse=cfg.no_render_faceverse,
already_align=cfg.already_align, no_pdfgc_motion=cfg.no_pdfgc_motion)
if __name__ == "__main__":
import torch.multiprocessing as mp
mp.set_start_method('spawn', force=True)
main()