Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,465 Bytes
8ed2f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import math
import torch
import torch.nn as nn
import numpy as np
from .ray_marcher import MipRayMarcher2
from . import math_utils
# global Meshes, load_obj, rasterize_meshes
# from pytorch3d.structures import Meshes
# from pytorch3d.io import load_obj
# from pytorch3d.renderer.mesh import rasterize_meshes
def generate_planes(return_inv=True): # 与project_onto_planes相对应
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
"""
planes = torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]]], dtype=torch.float32)
if return_inv:
return torch.linalg.inv(planes)
else:
return planes
def project_onto_planes(inv_planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
N, M, C = coordinates.shape
n_planes = 3
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
inv_planes = inv_planes.unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
projections = torch.bmm(coordinates, inv_planes)
return projections[..., :2]
# def project_onto_planes(planes, coordinates):
# """
# Does a projection of a 3D point onto a batch of 2D planes,
# returning 2D plane coordinates.
#
# Takes plane axes of shape n_planes, 3, 3
# # Takes coordinates of shape N, M, 3
# # returns projections of shape N*n_planes, M, 2
# """
# N, M, C = coordinates.shape
# n_planes, _, _ = planes.shape
# coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
# print('project_onto_planes', planes.view(-1), torch.abs(planes).sum())
# print(torch.linalg.inv(planes.clone().detach()))
# inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) # TODO:此处是否有翻转?
# projections = torch.bmm(coordinates, inv_planes)
# return projections[..., :2]
def sample_from_planes(inv_planes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None, debug=False):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
plane_features = plane_features.view(N*n_planes, C, H, W)
coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds
if debug: # debug
from torch_utils import debug_utils
debug_utils.save_obj('unproject_depth_cano.obj', v=coordinates.cpu()[0].numpy())
projected_coordinates = project_onto_planes(inv_planes, coordinates).unsqueeze(1)
output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_3dgrid(grid, coordinates, padding_mode='zeros', box_warp=None, pyramid=False):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
coordinates = (2 / box_warp) * coordinates # TODO: add specific box bounds
sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode=padding_mode, align_corners=False)
if pyramid:
for i in range(2):
grid_ = torch.nn.functional.interpolate(grid, scale_factor=0.5**((i+1)*2), mode='trilinear', align_corners=False)
sampled_features_ = torch.nn.functional.grid_sample(grid_.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode=padding_mode, align_corners=False)
sampled_features += sampled_features_
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
def __init__(self, flip_z):
super().__init__()
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
self.flip_z = flip_z
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
self.plane_axes = self.plane_axes.to(ray_origins.device)
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
is_ray_valid = ray_end > ray_start
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
else:
# Create stratified depth samples
depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_fine = out['rgb']
densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
if self.flip_z:
sample_coordinates[..., -1] *= -1
sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
class ImportanceRenderer_bsMotion(torch.nn.Module):
def __init__(self):
super().__init__()
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
def orth_transform(self, sample_coordinates, orth_scale):
sample_coordinates[..., 2] *= -1
sample_coordinates[..., 0] += self.orth_shift[0]
sample_coordinates[..., 1] += self.orth_shift[1]
sample_coordinates[..., 2] += self.orth_shift[2]
return sample_coordinates * orth_scale
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options, evaluation=False):
self.plane_axes = self.plane_axes.to(ray_origins.device)
dist = torch.norm(ray_origins, dim=-1).mean().item()
ray_start, ray_end = dist - 0.45, dist + 0.6
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
# sample_coordinates = self.orth_transform(sample_coordinates, self.orth_scale)
sample_coordinates_cano = sample_coordinates
out = self.run_model(planes, decoder, sample_coordinates_cano, sample_directions, rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance, det=evaluation)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_fine = out['rgb']
densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
# sample_coordinates[..., -1] *= -1
# if planes.shape[1] == 3:
sampled_features = sample_from_planes(self.plane_axes.clone(), planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
# elif planes.shape[2] == planes.shape[-1]:
# sampled_features = sample_from_3dgrid(planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'], pyramid=True).unsqueeze(1)
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
# ray_start [N, M, 1]
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) # [D, N, M, 1] -> [N, M, D, 1]
depth_delta = (ray_end - ray_start) / (depth_resolution - 1) # [N, M, 1]
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] # [N, M, D, 1]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance, det):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance, det).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
from torch_utils import misc
@misc.profiled_function
def dict2obj(d):
# if isinstance(d, list):
# d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
from torch_utils import persistence
@persistence.persistent_class
class Pytorch3dRasterizer(nn.Module):
## TODO: add support for rendering non-squared images, since pytorc3d supports this now
""" Borrowed from https://github.com/facebookresearch/pytorch3d
Notice:
x,y,z are in image space, normalized
can only render squared image now
"""
def __init__(self, image_size=224):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': False,
'cull_backfaces': True
}
# raster_settings = dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None, h=None, w=None):
fixed_vertices = vertices.clone()
fixed_vertices[...,:2] = -fixed_vertices[...,:2]
raster_settings = self.raster_settings
if h is None and w is None:
image_size = raster_settings['image_size']
else:
image_size = [h, w]
if h>w:
fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
else:
fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=image_size,
blur_radius=raster_settings['blur_radius'],
faces_per_pixel=raster_settings['faces_per_pixel'],
bin_size=0,#raster_settings['bin_size'],
max_faces_per_bin=raster_settings['max_faces_per_bin'],
perspective_correct=raster_settings['perspective_correct'],
cull_backfaces=raster_settings['cull_backfaces']
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
# print(image_size)
# import ipdb; ipdb.set_trace()
return pixel_vals
def render_after_rasterize(attributes, pix_to_face, bary_coords):
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
# borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
# ---------------------------- process/generate vertices, normals, faces
def generate_triangles(h, w, margin_x=2, margin_y=5, mask = None):
# quad layout:
# 0 1 ... w-1
# w w+1
#.
# w*h
triangles = []
for x in range(margin_x, w-1-margin_x):
for y in range(margin_y, h-1-margin_y):
triangle0 = [y*w + x, y*w + x + 1, (y+1)*w + x]
triangle1 = [y*w + x + 1, (y+1)*w + x + 1, (y+1)*w + x]
triangles.append(triangle0)
triangles.append(triangle1)
triangles = np.array(triangles)
triangles = triangles[:,[0,2,1]]
return triangles
def transform_points(points, tform, points_scale=None, out_scale=None):
points_2d = points[:,:,:2]
#'input points must use original range'
if points_scale:
assert points_scale[0]==points_scale[1]
points_2d = (points_2d*0.5 + 0.5)*points_scale[0]
# import ipdb; ipdb.set_trace()
batch_size, n_points, _ = points.shape
trans_points_2d = torch.bmm(
torch.cat([points_2d, torch.ones([batch_size, n_points, 1], device=points.device, dtype=points.dtype)], dim=-1),
tform
)
if out_scale: # h,w of output image size
trans_points_2d[:,:,0] = trans_points_2d[:,:,0]/out_scale[1]*2 - 1
trans_points_2d[:,:,1] = trans_points_2d[:,:,1]/out_scale[0]*2 - 1
trans_points = torch.cat([trans_points_2d[:,:,:2], points[:,:,2:]], dim=-1)
return trans_points
def batch_orth_proj(X, camera):
''' orthgraphic projection
X: 3d vertices, [bz, n_point, 3]
camera: scale and translation, [bz, 3], [scale, tx, ty]
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def angle2matrix(angles):
''' get rotation matrix from three rotation angles(degree). right-handed.
Args:
angles: [batch_size, 3] tensor containing X, Y, and Z angles.
x: pitch. positive for looking down.
y: yaw. positive for looking left.
z: roll. positive for tilting head right.
Returns:
R: [batch_size, 3, 3]. rotation matrices.
'''
angles = angles*(np.pi)/180.
s = torch.sin(angles)
c = torch.cos(angles)
cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2])
sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2])
zeros = torch.zeros_like(s[:, 0]).to(angles.device)
ones = torch.ones_like(s[:, 0]).to(angles.device)
# Rz.dot(Ry.dot(Rx))
R_flattened = torch.stack(
[
cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx,
sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx,
-sy, cy * sx, cy * cx,
],
dim=0) #[batch_size, 9]
R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3]
return R
import cv2
# end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r', end_list=[19]):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
radius = max(int(min(image.shape[0], image.shape[1])/200), 1)
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius)
image = cv2.circle(image,(int(st[0]), int(st[1])), radius, c, radius*2)
return image
import cv2
def fill_mouth(images, blur_mouth_edge=True):
# Input: images: [batch, 1, h, w]
device = images.device
mouth_masks = []
out_mouth_masks = []
for image in images:
image = image[0].cpu().numpy()
image = image * 255.
copyImg = image.copy().astype('float32')
h, w = image.shape[:2]
mask = np.zeros([h + 2, w + 2], np.uint8)
cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
mouth_masks.append(mouth_mask.unsqueeze(0))
if blur_mouth_edge:
copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
copyImg = cv2.blur(copyImg, (5, 5))
# cv2.imwrite("mouth_mask.png", mouth_mask)
out_mouth_masks.append(torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.)
mouth_masks = torch.stack(mouth_masks, 0)
res = (images + mouth_masks).clip(0, 1)
return res, torch.stack(out_mouth_masks, dim=0)
# def fill_mouth(images):
# #Input: images: [batch, 1, h, w]
# device = images.device
# mouth_masks = []
# out_mouth_masks = []
# out_upper_mouth_masks, out_lower_mouth_masks = [], []
# for image in images:
# image = image[0].cpu().numpy()
# image = image * 255.
# copyImg = image.copy()
# h, w = image.shape[:2]
# mask = np.zeros([h+2, w+2], np.uint8)
# cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# # cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
# mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
# mouth_masks.append(mouth_mask.unsqueeze(0))
#
#
# copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
# copyImg = cv2.blur(copyImg, (5, 5))
# # cv2.imwrite("mouth_mask.png", mouth_mask)
# out_mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.
# middle_row = torch.argmax(out_mouth_mask.sum(dim=1))
# out_mouth_masks.append()
#
# mouth_masks = torch.stack(mouth_masks, 0)
# res = (images + mouth_masks).clip(0, 1)
#
# return res, torch.stack(out_mouth_masks, dim=0) |