File size: 4,800 Bytes
8ed2f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.

"""
The ray sampler is a module that takes in camera matrices and resolution and batches of rays.
Expects cam2world matrices that use the OpenCV camera coordinate system conventions.
"""

import torch

class RaySampler(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None

    def forward(self, cam2world_matrix, intrinsics, resolution):
        """
        Create batches of rays and return origins and directions.

        cam2world_matrix: (N, 4, 4)
        intrinsics: (N, 3, 3)
        resolution: int

        ray_origins: (N, M, 3)
        ray_dirs: (N, M, 2)
        """
        N, M = cam2world_matrix.shape[0], resolution**2
        cam_locs_world = cam2world_matrix[:, :3, 3]
        fx = intrinsics[:, 0, 0]
        fy = intrinsics[:, 1, 1]
        cx = intrinsics[:, 0, 2]
        cy = intrinsics[:, 1, 2]
        sk = intrinsics[:, 0, 1]

        uv = torch.stack(torch.meshgrid(torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device),
                                        torch.arange(resolution, dtype=torch.float32, device=cam2world_matrix.device), indexing='ij')) * (1./resolution) + (0.5/resolution)
        uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
        uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)

        x_cam = uv[:, :, 0].view(N, -1)
        y_cam = uv[:, :, 1].view(N, -1)
        z_cam = torch.ones((N, M), device=cam2world_matrix.device)

        x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam
        y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam

        cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1)

        world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]

        ray_dirs = world_rel_points - cam_locs_world[:, None, :]
        ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2)

        ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)

        return ray_origins, ray_dirs

class RaySampler_zxc(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None

    def forward(self, cam2world_matrix, cam_K, resolution, normalize=True):
        """
        Create batches of rays and return origins and directions.

        cam2world_matrix: (N, 4, 4)
        intrinsics: (N, 3, 3)
        resolution: int

        ray_origins: (N, M, 3)
        ray_dirs: (N, M, 2)
        """
        N, M = cam2world_matrix.shape[0], resolution**2
        intrinsics = cam_K.clone()
        intrinsics[:, :2] *= resolution
        ray_origins, ray_dirs = [], []
        for n in range(N):
            # K_inv = torch.from_numpy(np.linalg.inv(K)).to(c2w.device)
            K_inv = torch.linalg.inv(intrinsics[n])
            c2w = cam2world_matrix[n]
            i, j = torch.meshgrid(torch.linspace(0, resolution - 1, resolution, device=intrinsics.device),
                                  torch.linspace(0, resolution - 1, resolution, device=intrinsics.device))  # pytorch's meshgrid has indexing='ij'
            i = i.t()
            j = j.t()

            homo_indices = torch.stack((i, j, torch.ones_like(i)), -1)  # [H, W, 3]
            dirs = (K_inv[None, ...] @ homo_indices[..., None])[:, :, :, 0]

            # Rotate ray directions from camera frame to the world frame
            rays_d = (c2w[None, :3, :3] @ dirs[..., None])[:, :, :, 0]  # [H, W, 3]
            if normalize:
                rays_d = torch.nn.functional.normalize(rays_d, dim=-1)
            # Translate camera frame's origin to the world frame. It is the origin of all rays.
            rays_o = c2w[:3, -1]
            rays_o = rays_o.expand(rays_d.shape)
            ray_dirs.append(rays_d.reshape(-1, 3))
            ray_origins.append(rays_o.reshape(-1, 3))

        return torch.stack(ray_origins, dim=0), torch.stack(ray_dirs, dim=0)